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Preface

I wrote this book to help financial analysts and other interested parties learn how
to build and interpret the results of Crystal Ball models for decision support.

There are several books that exist to inform readers about Monte Carlo simulation
in general. Many of these general books are listed in the References section of
this book. This book focuses on using Crystal Ball in three main areas of finance:
corporate finance, investments, and derivatives.

In 1982, University of Minnesota–Duluth Business School professor Henry
Person introduced me to IFPS, computer software designed for financial planning,
that we ran on VAX mainframe computers for an MBA class in quantitative
methods. IFPS used a tabular layout for financial data similar to Excel’s, although it
was more abstract than Excel’s because one had to print the data to see the layout
in IFPS instead of working with Excel’s tabular display of the data on the screen.
Gray (1996) describes what is evidently the latest, and perhaps final, version of this
financial planning software. It is significant to me because IFPS included a Monte
Carlo command that gave me my first glimpse of using a computer as a tool for
financial risk analysis.

I was hooked. The next term, I took Henry’s class in discrete-event simulation
based on Tom Schriber’s (1974) red GPSS textbook. I found the notion of system
simulation fascinating. It made experimentation possible in a computer lab on
models of real-world situations, just as the physical scale models of dams in the
University of Minnesota–Twin Cities hydraulic laboratory made experimentation
possible for the civil engineering professors during my days as an undergraduate
student there. I saw many places where systems simulation could have been applied
to the construction industry when I worked as a field engineer, but was unaware at
the time of what simulation could accomplish.

More graduate school beckoned. After a year of teaching finance at the University
of Washington in Seattle, I returned to the Twin Cities to eventually earn my
doctorate in what became the Carlson School of Management. There I met David
Kelton in 1986. His coauthored textbook, now in print as Law and Kelton (2000),
got me started on my dissertation research that was done largely at the Minnesota
Supercomputer Institute, where I ran FORTRAN programs on Cray supercomputers
and graphed the resulting output on Sun workstations. It is amazing to me that
anyone can do the same tasks today faster and more easily by using Crystal Ball on
a personal computer. I wish that I had had today’s version of the personal computer
and Crystal Ball available to me when I worked as an economic analyst at a Fortune
50 banking conglomerate in 1985.

xi
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As assistant professor in the management sciences department at the University
of Miami in Coral Gables, Florida, I taught simulation to systems analysis and
industrial engineering students in their undergraduate and graduate programs.
When I moved to the University of Kansas in 1994, I had hopes of offering a similar
course of study, but learned quickly that the business students here then were more
interested in financial risk analysis than systems simulation. In 1996, I offered my
first course in risk analysis at our suburban Kansas City campus to 30 MBA students,
who loved the material but not the software we used—which was neither IFPS nor
Crystal Ball.

I heard many complaints that term about the ’’clunky software that crashed all
the time,’’ but one student posed an alternative. She asked if I had heard of Crystal
Ball, which was then in use by a couple of her associates at Sprint, the Kansas
City–based telecommunications company. I checked it out, and the more I read in
the Crystal Ball documentation, the more convinced I became that the authors were
influenced by the same Law and Kelton text that I had studied in graduate school.

At the 1997 Winter Simulation Conference, I met Eric Wainwright, chief
technical officer at Decisioneering, Inc. (DI), and one of the two creators of Crystal
Ball, who confirmed my suspicions about our shared background. Thus began
my friendship with DI that led to creation of Risk Analysis Using Crystal Ball,
the multimedia training CD-ROM offered on the DI Web site. That effort, in
collaboration with Larry Goldman, Lucie Trepanier, and Dave Fredericks, was a
wholly enjoyable experience that gave me reason to believe—correctly—that the
effort to produce this book would also be enjoyable.

About the same time I met Eric, I had the good fortune to work with David
Kellogg at Sprint. His interest in Crystal Ball and invitation to present a series of
lectures on its use as a decision support tool led to my development of training
classes that were part of the Sprint University of Excellence offerings for several
years. I am grateful to David and all the participants in those classes over the
years for their helping me to hone the presentation of the ideas contained in this
book. I am also grateful to Sprint and Nortel Networks for the financial support
that led to development of the real options valuation tool described in Chapter 13.
Other consulting clients will go unnamed here, but they also have influenced the
presentation.

Microsoft Excel has become the lingua franca of business. Business associates in
different industries and even some in different divisions of the same company often
find it difficult to communicate with each other. However, virtually everyone who
does business planning uses Excel in some capacity, if not exclusively. Though not
always able to communicate in the same language, businesspeople around the globe
are able to share their Excel spreadsheets. As with everything in our society, Excel
has its critics. Yet the overwhelming number of users of this program make it foolish
to deliberately shun its use.

My main criticism of Excel is obviated by use of the Crystal Ball application.
Excel is extremely versatile in its ability to allow one to build deterministic models in
many different business, engineering and scientific domains. Without Crystal Ball, it
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is cumbersome to use Excel for stochastic modeling, but Crystal Ball’s graphical input
and output features make it easy for analysts to build stochastic models in Excel.

In the 1970s, Jerry Wagner and the other founders of IFPS had a dream
of creating software that would dominate the market for a computerized, plain-
language tool for financial planning by executives. In the meantime, Microsoft Excel
came to dominate the market for financial planning software. The combination of
Excel, Crystal Ball, and OptQuest provides a powerful way for you to enhance your
deterministic models by adding stochastic assumptions and finding optimal solutions
to complex real-world problems. Building such models will give you greater insight
into the problems you face, and may cause you to view your business in a new light.

ORGANIZATION OF THIS BOOK

This book is intended for analysts who wish to construct stochastic financial models,
and anyone else interested in learning how to use Crystal Ball. Instructors with
a practical bent may also find it useful as a supplement for courses in finance,
management science, or industrial engineering.

The first six chapters of this book cover the features of Crystal Ball and
OptQuest. Several examples are used to illustrate how these programs can be used
to enhance deterministic Excel models for stochastic financial analysis and planning.
The remaining seven chapters provide more detailed examples of how Crystal Ball
and OptQuest can be used in financial risk analysis of investments in securities,
derivatives, and real options. The technical appendices provide details about the
methods used by Crystal Ball in its algorithms, and a description of some methods of
variance reduction that can be employed to increase the precision of your simulation
estimates. All of the models described in the book are available on the accompanying
CD-ROM, as is a link to a Web site from which a trial version of Crystal Ball may
be downloaded. The contents of each chapter and appendix are listed below:

Chapter 1 provides an overview of financial modeling and risk analysis through
Monte Carlo simulation. It also contains a discussion of risk management and the
benefits and limitations of Crystal Ball.

Chapter 2 describes how to specify and interpret Crystal Ball forecasts, the graph-
ical and numerical summaries of the output measures generated during simulation.
A retirement portfolio is used for an example.

Chapter 3 takes a helicopter view of building a Crystal Ball model. It starts
out with a simple, deterministic business planning Excel model, and then shows
you how to add stochastic assumptions to it with Crystal Ball. The chapter also
contains a discussion of possible sources of error in your models and how they can
be controlled.

Chapter 4 contains a deeper look at specifying Crystal Ball assumptions. It
describes Crystal Ball’s basic distributions and shows you how to select distributions
using historical data and/or your best expert judgment. The chapter also describes
how to use, estimate, and specify correlations between assumptions in a Crystal Ball
model.
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Chapter 5 covers the use of decision variables in detail. A decision variable is
an input whose value can be chosen by a decision maker. Decision variables enable
you to harness the power of Crystal Ball and OptQuest to find optimal solutions. A
first look at real options is included in this chapter.

Chapter 6 lists and explains the runtime options available in Crystal Ball as well
as how and when to use them.

Chapter 7 discusses the relative merits of using the concepts of net present value
and internal rate of return in deterministic and stochastic models. Examples include
capital budgeting in finance and customer lifetime value in marketing.

Chapter 8 describes how to add stochastic assumptions to pro forma financial
statements, then perform sensitivity analyses using tornado charts and Crystal Ball
sensitivity charts.

Chapter 9 presents examples of using Crystall Ball to construct single- and
multiperiod portfolio models. It also compares the Crystal Ball results for a single-
period model to the analytic solution in a special case where an analytic solution
can be found.

Chapter 10 discusses Value at Risk (VaR) and its more sophisticated cousin,
Conditional Value at Risk (CVaR), the relative merits of VaR and CVaR, and how
they are used in risk management.

Chapter 11 describes how to simulate financial time series with Crystal Ball. It
covers random walks, geometric Brownian motion, and mean-reverting models, as
well as a discussion of autocorrelation and how to detect it in empirical data.

Chapter 12 shows how to create Crystal Ball models for financial option pricing,
covering European, American, and exotic options. It includes a model to demonstrate
how to simulate returns from option strategies, using a bull spread as an example. It
also shows how to use Crystal Ball to evaluate a relatively new derivative security, a
principal-protected instrument.

Chapter 13 concludes the main body of the text with a discussion of how Crystal
Ball and OptQuest are used to value real options. It also contains a brief review of
the literature and some applications of real options analysis.

Appendix A contains short descriptions of each available Crystal Ball assump-
tion. Each description includes the assumption’s parameters, probability mass or
density function, cumulative distribution function, mean, standard deviation, and
notes about the distribution and/or its usage.

Appendix B provides a brief description of how Crystal Ball generates the
random numbers and variates during the simulation process.

Appendix C describes some variance reduction techniques, methods by which
an analyst changes a model to get more precise estimates from a fixed number of
trials during a simulation.

Appendix D provides information on downloading the Crystal Ball software
and Excel files that are used in this book.

Appendix E contains citations for the references in the text to academic and
practitioner literature relating to financial modeling and risk analysis. A glossary is
also included.
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CHAPTER 1
Introduction

L ife is stochastic. Although proponents of determinism might state otherwise,
anyone who works in business or finance today knows quite well that future

events are highly unpredictable. We often proceed by planning for the worst outcome
while hoping for the best, but most of us are painfully aware from experience that
there are many risks and uncertainties associated with any business endeavor.

Many analysts start creating financial models of risky situations with a base
case constructed by making their best guess at the most likely value for each of the
important inputs and building a spreadsheet model to calculate the output values
that interest them. Then they account for uncertainty by thinking of how each input
in turn might deviate from the best guess and letting the spreadsheet calculate the
consequences for the outputs. Such a ‘‘what-if’’ analysis provides insight into the
sensitivity of the outputs to one-at-a-time changes in the inputs.

Another common procedure is to calculate three scenarios: best case, worst case
and most likely. This is done by inserting the best possible, worst possible, and most
likely values for each key input, then calculating the best-case outputs when each
input is at its best possible value; the worst-case outputs when each input is at its
worst possible value; and using the base case as the most likely scenario. Scenario
analysis shows the ranges of possibilities for the outputs, but gives no idea of the
likelihood of output values falling between the extremes.

What-if and scenario analysis are good ways to get started, but there are more
sophisticated techniques for analyzing and managing risk and uncertainty. This book
is designed to help you use the software programs Crystal Ball and Excel to develop
financial models for risk analysis. The spreadsheet program Excel has dramatically
changed financial analysis in the past 30 years, and Crystal Ball extends the capability
of Excel by allowing you to add stochastic assumptions to your spreadsheets. Adding
stochastic assumptions provides a clearer picture of the possibilities for each of the
outputs of interest. Reading this book and following the examples will help you use
Crystal Ball to enhance your risk analysis capabilities.

Throughout the book, I use the word stochastic as a synonym for random
or probabilistic, and as an antonym for deterministic. The majority of spreadsheet
models in use today are deterministic, but every spreadsheet user knows at some level
that there is a degree of uncertainty about each of the inputs to his or her models.

1



2 FINANCIAL MODELING WITH CRYSTAL BALL AND EXCEL

Crystal Ball enables you to use a systematic approach to account for uncertainty in
your spreadsheet models.

The first six chapters of this book demonstrate how to use Crystal Ball. The
remainder of the text provides examples of using Crystal Ball models to help solve
problems in corporate finance, investments, and financial risk management. The
appendices provide technical details about what goes on under the hood of the
Crystal Ball engine.

This chapter is an overview of financial modeling and risk analysis. Some
example applications are listed below where these tools provide insights that might
not otherwise come to light, and you get a glimpse of how straightforward it is
to assess financial risk using Crystal Ball and Excel. For a simple model that is
already built and ready to run, we will interpret the output and analyze the model’s
sensitivity to changes in its inputs. The chapter concludes with a discussion of the
benefits and limitations of risk analysis with Crystal Ball and Excel.

FINANCIAL MODELING

For the purposes of this book, financial modeling is the construction and use
of a spreadsheet depiction of a company’s or an individual’s past, present, or
future business operations. To learn more about deterministic financial modeling,
see Proctor (2004), Sengupta (2004), or Koller, Goedhart, and Wessels (2005).
For each situation where we wish to use a stochastic model, we begin with a
deterministic Excel model, then add stochastic assumptions with Crystal Ball to
generate stochastic forecasts. By analyzing the stochastic forecasts statistically, we
can make inferences about the riskiness of the business operations described by the
model. The risk analysis process became much easier and more widely available
with the introduction of Crystal Ball to the marketplace in 1987.

RISK ANALYSIS

The first recorded instances of risk analysis are the practices of the Asipu people
of the Tigris-Euphrates valley about 3200 B.C. (Covello and Mumpower 1985).
The Asipu would serve as consultants for difficult decisions such as a proposed
marriage arrangement, or the location of a suitable building site. They would list
the alternative actions under consideration and collect data on the likely outcomes
of each alternative. The priest-like Asipu would interpret signs from the gods,
then compare the alternatives systematically. Upon completion of their analysis,
they would etch a final report to the client on a clay tablet, complete with a
recommendation of the most favorable alternative (Oppenheim 1977).

According to the Oxford English Dictionary (Brown 2002), the term risk
analysis means the ‘‘systematic investigation and forecasting of risks in business
and commerce.’’ The word risk comes through French, Latin, and Italian from
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the Greek word rhiza, in reference to sailors navigating among cliffs. Note that
although some authorities believe that risk is derived from the Arabian word rizq,
meaning ‘‘subsistence’’ it is difficult to explain how this meaning developed into
that of ‘‘danger’’ (Klein 1967). If you bought this book to help you analyze business
problems, I will bet that you have no trouble seeing the connection between the risks
of managing a business and the perils of navigating a sailing vessel around cliffs and
barely submerged rocks that can damage the hull and sink the ship.

Imagine an ancient Greek mariner piloting a ship as it approaches a cliff or
point of rocks in uncharted waters. Another sailor is on lookout in the crow’s nest
at the top of the mast to give the earliest possible warning about how far down into
the water an outcrop from the cliff might be. A navigator nearby with sextant and
compass is keeping track of where the ship has been and the direction in which it’s
headed. His lookout warns him at the first sign of trouble ahead, but it is up to the
pilot to decide how wide to take the turn around the cliff. Cutting the corner too
close can save time but might sink the ship. Veering far from the edge is safer, but
adds costly travel time.

In navigating a strait between two cliffs, the pilot’s decision is even more difficult.
Being too far from one cliff can mean being too close to the opposing cliff. The pilot
must weigh the risks, use judgment and instinct to carefully choose a course, and
then hope for the best as vessel and crew proceed through the strait.

It is the pilot’s job to take all of the available information into account and decide
how best to sail the ship in uncharted waters. The pilot wants a clear analysis of all
the dangers and opportunities that lie ahead, in order to decide whether the potential
time savings of the ship’s chosen course outweigh the disastrous consequences of
hull damage. Even though the ship may have been through many different straits
in the past, the pilot needs a systematic investigation and forecasting of the risks
associated with the planned course through each new strait encountered during the
voyage.

If you are running a business (or are an analyst helping to run a business),
you are often in situations conceptually similar to those facing the pilot of a sailing
vessel in uncharted waters. You know where your business has been, and you are
always on the lookout for dangers and opportunities on the horizon. You operate
in an environment fraught with uncertainty. You know that future circumstances
can affect you and your business greatly, and you want to be prepared for what
might happen. In many situations, you need to weigh the favorable and unfavorable
consequences of some decision and then choose a course of action. Similar to a
ship pilot, it is your job to decide how best to navigate the straits of your business
environment. What do you do?

Fortunately, mathematicians such as Simon LaPlace and Blaise Pascal developed
the fundamental underpinnings of risk analysis in the seventeenth century by devising
the mathematical methods now used in probability theory (Ore 1960). From these
precepts came the science of statistics. ‘‘What?’’ you ask, ‘‘I studied probability and
statistics in college and hated every minute of them. I thought I was done with that
stuff. How can it help me?’’
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In short, probability and statistics help you weigh the potential rewards and
punishments associated with the decisions you face. This book shows you how
to use Crystal Ball to add probabilistic assumptions and statistical forecasts to
spreadsheet models of a wide variety of financial problems. In the end, you still must
make decisions based on your best judgment and instincts, but judicious use of the
methods of probability and statistics that we go through in this book will help you
in several ways.

The modeling process described here enables you to investigate many different
possibilities, hone your intuition, and use state-of-the-art software tools that are
extremely beneficial for managing risk in dynamic business environments. The risk
analysis process forces you to think through the possible consequences of your
decisions. This helps you gain comfort that the course of action you select is the best
one to take based on the information available at the time you make the decision.
Risk analysis is the quantification of the consequences of uncertainty in a situation
of interest, and Crystal Ball is the tool for carrying it out.

MONTE CARLO SIMULATION

Risk analysis using Crystal Ball relies on developing a mathematical model in Excel
that represents a situation of interest. After you develop the deterministic model,
you replace point estimates with probability distribution assumptions and forecast
the distribution of the output. The forecasted output distribution is used to assess
the riskiness of the situation.

For simple models, the output distribution can be found mathematically to give
an analytic solution. For example, consider the simple cost equation

(Total Cost) = $100 + $15 × (Quantity Produced),

where (Quantity Produced) is modelled as a normal probability distribution with
mean, µ = 50, and standard deviation, σ = 10, and we want to know the probability
that (Total Cost) is greater than $900. We don’t need Crystal Ball for this situation
because we can easily obtain an analytic solution.

A result in probability theory holds that if a random variable X follows the
normal distribution with mean, µ, and standard deviation, σ , then the random
variable Y = a + bX will also be normally distributed with mean, a + bµ, and
standard deviation, bσ . Therefore, we can easily determine that (Total Cost) is
normally distributed with mean, 100 + (15 × 50) = $850, and standard deviation,
15 × 10 = $150. Using a table of cumulative probabilities for the standard normal
distribution, or using the Excel function = 1-NORMDIST (900,850,150, TRUE), we
can find that the probability is 36.94 percent that (Total Cost) is greater than $900.
See the file Analytic.xls for these calculations, along with a Crystal Ball model that
validates the solution.
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FIGURE 1.1 Simple profit model in
Profit.xls. Cells C5:C7 are defined as
Crystal Ball assumptions. Cell C11 is a
Crystal Ball forecast.

In practice however, it is easy to find situations that are too difficult for most
analysts to solve analytically. For example, consider a simple situation where unit
sales, S, follow the Poisson distribution with mean 10; price, P, is lognormally
distributed with mean $50 and standard deviation $10; variable cost percentage,
V, has the beta distribution with parameters minimum = 0%, maximum = 100%,
alpha = 2, and beta = 3; and fixed cost, F = $100. Then profit, π , is calculated as

π = SP(1 − V) − F (1.1)

in the Profit.xls model shown in Figure 1.1. The stochastic assumptions in Profit.xls
are shown in Figure 1.2. For this model, it is easy to obtain a forecast distribution
for profit with Crystal Ball and find the probability of making a positive profit to be
approximately 76 percent (Figure 1.3), but it is not so easy to determine the distribu-
tion mathematically and obtain the probability of positive profit by analytic solution.

Further, Crystal Ball enables us do sensitivity analysis very easily. The sensitivity
chart in Figure 1.4 shows that most of the variation in profit arises from the
Assumption V, the variable cost percentage. If we are able to control this variable,
then the model shows that we can reduce the variation of profit by reducing the
variation in V. If this variable is beyond our control, the chart indicates that we
should work first on V when we are fine-tuning the model by improving our
estimates of the assumption variables.

With Crystal Ball, we obtain an approximate solution using Monte Carlo
simulation to generate the output distribution. One of the features of Monte Carlo



6 FINANCIAL MODELING WITH CRYSTAL BALL AND EXCEL

FIGURE 1.2 Crystal Ball assumptions defined in cells C5:C7 of the simple
profit model.

is that the more simulation trials we run, the closer is our approximation to the
true distribution. The technique of Monte Carlo simulation has been used for this
purpose for many years by scientists and engineers working with large and expensive
mainframe computers. In combination with today’s small and inexpensive personal
computers, Crystal Ball and Excel bring to everyone the ability to run Monte Carlo
simulations on a PC.

In statistics, one of the earliest uses of simulation (albeit without a computer),
was that by the mathematical statistician William S. Gossett, who used the pen
name ‘‘Student’’ to conceal his identity and appease his employers at Guinness
brewing company. To verify his mathematical derivations, Gossett repeatedly drew
random samples of numbers from a bowl, wrote them down, and painstakingly
made his calculations. The results he obtained were within the tolerances expected
from an experiment involving random sampling. Gossett’s sampling experiments are
conceptually similar to what we do on computers today, but Crystal Ball does for us
in seconds what must have taken Gossett weeks or months to do by hand in his day.
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FIGURE 1.3 Forecast distribution for the simple profit model. The
certainty of 75.74 percent for the range from 0.00 to infinity is the Crystal
Ball estimate of the probability of positive profit, Pr(π > 0) for the model
specified by Expression 1.1.

FIGURE 1.4 Sensitivity chart for the simple profit model. The input
variables (assumptions) P, S, and V are listed from top to bottom in
decreasing order of their impact on the output variable (forecast), profit.
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The term Monte Carlo originated in a conversation between two mathematicians
employed by Los Alamos National Laboratory as a code word for their secret work
on the atomic bomb (Macrae 1992). John von Neumann and Stanislaw Ulam
applied Monte Carlo methods to problems involving direct simulation of behavior
concerned with random neutron diffusion in fissionable material (Rubinstein 1981).
The name was motivated by the similarity of the computer-generated results to the
action of the gambling devices used at the casinos in the city of Monte Carlo in
the principality of Monaco. The term caught on and is now widely used in finance,
science, and engineering.

RISK MANAGEMENT

When analyzing risk with the methods presented in this book you will be able to
quantify the consequences of uncertainty by answering three main questions:

1. What can happen?
2. How likely is it to happen?
3. Given that it occurs, what are the consequences?

All good managers go through a process by which they consider these questions
somehow, even if subconsciously. By taking the time to answer the questions in
quantifiable terms, you will develop deeper insight into the problems you face.

Risk analysis is part of a broader set of methods called risk management, which
also seeks to find answers to three main questions:

1. What can be done?
2. What options are available?
3. What are the associated trade-offs in terms of costs, benefits, and risks?

It is your job as a manager or analyst to identify what can be done and what options
are available, but once you have done so, the methods in this book will help you
investigate the associated trade-offs in terms of costs, benefits, and risks.

Risk analysts often claim that much of the benefit of using Crystal Ball comes
just from going through the process used to develop and fine-tune their models. The
risk analysis process helps you develop insights into a problem more quickly than
you would without it. In a sense, the intent of this book is to help save you some of
the time and tuition you might otherwise pay in the school of hard knocks to reach
good decisions.

BENEFITS AND LIMITATIONS OF USING CRYSTAL BALL

This section describes some of the benefits and the limitations of using Crystal Ball
and Excel for risk analysis. When it is applicable, diligent use of these tools yields
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deeper insight and understanding that will lead to better decision making. However,
the tools have their limits as described below.

Benefits
■ Careful study of the situation being modeled usually reveals the key input factors

that lead to success. Sometimes it will become obvious what these factors are
during model building. However, Crystal Ball has built-in sensitivity analysis
tools to help identify the key input factors.

■ As mistakes are costly, it is better to evaluate before implementation. A valid
model of a situation can help save much time and expense compared to
experimenting with aspects of the actual situation to see what happens. This
book is intended to help you build valid models.

■ Computer hardware and software make simulation easy. Until recently, the
use of Monte Carlo simulation was limited to those who had access to large
mainframe computers and the expertise to program them. Today’s personal
computers have the same computational horsepower as yesterday’s mainframes.
Crystal Ball has been developed over the years to make the addition of stochastic
inputs and the calculation of output statistics as easy as possible.

■ Realistic situations can be analyzed with relatively simple models. While many
realistic situations have a host of potential complications, most often just a few
of these have the greatest effect on the outputs. Crystal Ball’s sensitivity analysis
features help you identify the effects of the factors having the greatest impact.

■ Risk analysis can be a convincing agent for change. For those who understand
the modeling process and the output produced by Crystal Ball, experimenting
with the model can demonstrate very well the impact of changes to the system.
If you have earned the buy-in of key decision makers, the model can be a
powerfully persuasive tool.

Limitations
■ Validity of the input data is essential. As with any other computer program, the

output is only as good as the input. The aphorism ‘‘garbage in, garbage out’’
will always be true for Crystal Ball models as it will be for every computer
program.

■ If you can’t model it, you can’t simulate it. Your ability to build Crystal Ball
models is subject to the limitations of Excel. If you cannot build an Excel
spreadsheet to represent the situation, then you cannot use Crystal Ball for
simulation. Fortunately, the hundreds of functions built into Excel make it very
versatile, and Crystal Ball allows you to use Excel’s VBA capabilities if necessary
for specialized purposes.

■ Risk analysis requires expert insight to make decisions. Crystal Ball will not
make decisions for you. It will help you gain insight into the problem, but you
must still reach conclusions and make decisions based on your judgment and
intuition about the situation you are analyzing.
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■ Crystal Ball gives approximate rather than exact solutions. This ‘‘limitation’’ is
mostly an academic criticism. Many purists prefer to use only models that avail
themselves to analytic solution. When confronted by a realistic complication that
precludes analytic solution, they simply assume away the complication. Most
practitioners, however, wish to include realistic complications and are happy
to accept the trade-off of getting an approximate solution with simulation. The
limitation is that they might have to run the model longer to obtain the desired
precision. However, most practitioners prefer an approximate solution to a
realistic problem over an exact solution to an oversimplified problem that is
only a rough approximation to reality.



CHAPTER 2
Analyzing Crystal Ball Forecasts

I n this chapter, using an example of accumulating funds for retirement, we see
the graphical and numerical summaries of forecasts that Crystal Ball provides

automatically. This chapter serves as a review of elementary statistical analysis,
focused on the standard output built into Crystal Ball.

SIMULATING A 50 – 50 PORTFOLIO

Let’s say that you want to start saving for your retirement. You are 30 years old and
wish to retire at age 60. You plan to put away an inflation-adjusted $10,000 per
year, and would like to know how much wealth you will have accumulated after 30
years. At this point, you consider only two types of assets: stocks and bonds.

If you had perfect foresight, you would know exactly what returns each
investment would bring over the next 30 years. With that information, you wouldn’t
need Crystal Ball and could optimize your portfolio by investing in only those assets
that you knew would go up. Of course, no one has perfect foresight, so what do you
do? In this chapter, we’ll consider an oversimplified model for investing retirement
funds and use it to illustrate how to analyze Crystal Ball forecasts.

Accumulate.xls

Overview. For this model we assume that returns on stocks and bonds during
the next 30 years will resemble (in a statistical sense) the returns that
have been observed during the years 1926 to 2004. You have heard that
diversification is a good thing to do when investing your money, so you
decide initially to split the money you want to set aside for retirement each
year by putting one half into stocks and one half into bonds. We call this
the 50–50 portfolio, and model it in the Excel file Accumulate.xls.

The model draws returns on stocks and bonds randomly for each year and
calculates the wealth you will have accumulated for retirement 30 years
from now, assuming a constant 3 percent inflation rate. A segment of this
model is shown in Figure 2.1. Note that rows 14 through 40 are hidden to
save space.

11
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FIGURE 2.1 Spreadsheet segment from Accumulate.xls showing accumulated value after 30 years of
retirement savings where 50 percent was put into stocks and 50 percent into bonds each year. Note that
Rows 14 through 40 are hidden.

Forecast. You want to see the possible distribution of wealth you will have
accumulated after 30 years—Year 30 Wealth. Cell D4 has the formula
=H41 to get Year 30 Wealth displayed near the top of the spreadsheet.

Stochastic assumptions. Cells B12:B41 represent the total annual return on
stocks for years 1 through 30. Each year’s return on stocks is lognormal
with mean 1.1517 and standard deviation 0.2746. Cells C12:C41 represent
the total annual return on bonds for years 1 through 30. Each year’s return
on bonds is lognormal with mean 1.0585 and standard deviation 0.0735. In
this model, all assumptions are statistically independent of each other (that
is, all correlations are zero). The parameters of the lognormal distributions
were chosen with the help of Crystal Ball’s distribution-fitting feature, which
is described in Chapter 4.

Decision variable. The sole decision variable in this model is Cell B4, the pro-
portion of each year’s investment that is allocated to stocks. The proportion
allocated to bonds is calculated in Cell B5 as =1–B4 to ensure that the
entire investment is put into either stocks or bonds each year. The initial
proportion allocated to stocks is 50 percent.

Summary. Figure 2.2 shows the frequency view of a forecast chart for Year 30
Wealth obtained after running the simulation for 10,000 trials. Note that
the distribution is highly skewed to the right because of a few instances of
very high returns over the 30-year period.

Frequency Chart

The default graph in the Forecast window is a frequency chart (also known as a
histogram) that shows how often a forecast cell had a value falling in each of several
possible intervals. In the forecast window for Year 30 Wealth in Figure 2.2, the
possible values range from $0 to $15 million, and are broken up into 15 equal
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FIGURE 2.2 Frequency chart showing accumulated value after 30 years
of retirement savings where 50 percent was put into stocks and 50 percent
into bonds each year. The estimated probability of accumulating between
$1 million and $2 million is shown in the Certainty field.

intervals (of size $1 million). The height of each bar indicates how many simulation
trials resulted in a Year 30 Wealth value that fell in the corresponding interval.

For example, the tallest bar in Figure 2.2 indicates that Year 30 Wealth was
between $1 million and $2 million in just fewer than 3,600 trials. The right side of
the histogram has the frequency scale. Because there were 10,000 trials run, and the
estimated probability (certainty) of Year 30 Wealth being between $1 million and
$2 million is 34.47 percent, we know that there must have been 3,447 trials that
resulted in Year 30 Wealth between $1 million and $2 million. The left side of the
histogram has the probability scale. The text ‘‘9,761 Displayed’’ in the upper right
corner of the window indicates that Year 30 Wealth was greater than $15 million
(literally, ‘‘off the chart’’) on 239 of the 10,000 simulation trials run. We know
that all of the undisplayed values must be above $15 million rather than below $0
because the portfolio value can never be negative under the assumptions we used.

Cumulative Frequency Chart

Change the forecast window by clicking on Preferences, Forecast. . ., then selecting
Cumulative Frequency in the View field and clicking OK. You may also click on
View → Cumulative Frequency in the top menu of the forecast window. The cumu-
lative frequency chart in Figure 2.3 shows the frequency with which the simulation
trials fell into each interval or below. For example, from the cumulative frequency



14 FINANCIAL MODELING WITH CRYSTAL BALL AND EXCEL

FIGURE 2.3 Cumulative frequency chart showing accumulated value
after thirty years of retirement savings where 50% was put into stocks
and 50% into bonds each year. The estimated probability of
accumulating more than $1 million is shown in the Certainty field.

chart you can see that in 80.09 percent of the trials, 30-year wealth had a value below
$5 million. Another way to interpret this example is to say that the estimated prob-
ability is approximately 80 percent that 30-year wealth will be less than $5 million.

Note that Crystal Ball also provides a reverse cumulative frequency chart (not
pictured here) that shows the frequency with which the simulation trials fell into
each interval or above. You can cycle through the different views by using the
keystroke combination Ctrl-d when the forecast window is active. Table 2.1 lists
the keystroke combinations (sometimes called ‘‘hot keys’’ or ‘‘keyboard shortcuts’’)
that are available to alter your view of the forecast window. Make the Year 30
Wealth forecast window active and experiment with different combinations to see
the effects.

Statistics View

The statistics view of the Forecast window in Figure 2.4 provides numerical sum-
maries of the forecast. Descriptions of the statistics computed automatically by
Crystal Ball in Figure 2.4 are listed below. The number of each statistic in the
list can be used in the Excel formula =CB.GetForeStatFn(Range,Index) as the
value of Index. The statistics and their indices are also listed in Table 4.1, and
usage of the =CB.GetForeStatFn(Range,Index) is illustrated in Cells D46:E57 in
Accumulate.xls.
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TABLE 2.1 Keystroke combinations (‘‘hot keys’’) that can be used to cycle through settings
available in the Chart Preferences dialog. These commands work on the primary
distribution—the theoretical probability distribution for assumptions, and the generated
values for forecasts and overlay charts.

Hot Key Description

Ctrl-d Cycles through chart views: Frequency, Cumulative Frequency, Reverse Cumu-
lative Frequency (for assumption and forecast charts)

Ctrl-b
or Ctrl-g

Cycles through bins or group interval values to adjust the number of data bins
used to create the chart

Ctrl-l Cycles through gridline settings: None, Horizontal, Vertical, Both
Ctrl-t Cycles through chart types: Area, Line, Column; for sensitivity charts: Bar

(direction), Bar (magnitude), Pie (in Contribution to Variance view)
Ctrl-3 Cycles between two-dimensional and three-dimensional chart display
Ctrl-m Cycles through central tendency marker lines: None, Base Case, Mean, Median,

Mode (except for sensitivity and trend charts)
Ctrl-n Toggles the legend display on and off
Ctrl-p Cycles through percentile markers: None, 10%, 20%, . . ., 90%
Spacebar Cycles through window views when Excel is not in Edit mode: Chart, Statistics,

Percentiles, Goodness of Fit (if distribution fitting is selected—except for trend
charts)

For the mathematical expressions in the list below, we denote the values
produced by the simulation in a forecast cell as y1, y2, . . . , yn, where n is the number
of iterations run before the simulation stops.

1. Trials. The first item listed in the statistics view is Trials, which is also called
the number of iterations, n. A trial (or iteration) is a three-step process in which
Crystal Ball generates a random number for each assumption cell, recalculates
the spreadsheet model(s), and collects the result(s) for the forecast window(s).
The number of trials is the only descriptive statistic value that is under your
direct control. Use the Run Preferences dialog box to specify the maximum
number of trials.

2. Mean. The next item in the Statistics View is Mean, which is the same as the
arithmetic average. It is calculated as

Mean = Y = 1
n

n∑

i=1

yi.

Even though the window indicates that only 9,761 trials are displayed, the value
$3,775,824 for the mean in Figure 2.4 is calculated from all 10,000 trials of the
simulation.
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FIGURE 2.4 Forecast chart statistics for accumulated value after 30 years
of retirement savings where 50 percent was put into stocks and 50 percent
into bonds each year.

If you wish to calculate statistics for selected values of the forecast, click on
Preferences, Forecast..., then the Filter tab. You will be able to include or
exclude any specified range of values from the calculations. This feature will
come in handy later for calculating expected tail loss.
The mean is one of three measures of location computed by Crystal Ball. The
other two measures of location are the median and the mode. In a highly skewed
distribution such as Year 30 Wealth, the mean may not be the best indication of
the location of the distribution. Use the certainty range in the forecast chart to
see for yourself that the probability of Year 30 Wealth equalling or exceeding
the mean is only about 30 percent.

3. Median. The median is the value in the middle of the distribution. For example,
6 is the median of the distribution of values 1, 3, 6, 7, and 9. In a distribution
with an odd number of values, the median is found by ordering the values from
smallest to largest and then selecting the middle value. In a distribution with
an even number of values, the median is equal to the mean of the two middle
ordered values.
For Year 30 Wealth, the median value in Figure 2.4 is $2,425,951, which means
that the probability is about 50 percent that our retirement portfolio will be
that large or larger at that time. The median is less sensitive to outliers than the
mean. For that reason, it is sometimes preferred to the mean as a measure of
location, as it is here because the Year 30 Wealth forecast frequency distribution
is highly skewed.
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4. Mode. The mode is the single value that occurs most frequently in a set of
values. For a forecast that can take on continuous values, it is likely that no
single value will occur more than once, so the mode is often listed as dashes
(– –) in the statistics view, as it is in Figure 2.4.

5. Standard Deviation. The standard deviation is a measure of dispersion, or
spread, of a distribution. Think of it as roughly equal to the average distance of
each value from the mean, although as you can see in the formula below, it is
not exactly equal to that:

Standard Deviation = s =
√√√√ 1

n − 1

n∑

i=1

(yi − y)2. (2.1)

The standard deviation is one of two equivalent measures of spread computed by
Crystal Ball. The other measure of spread is the variance. In many applications,
the standard deviation is preferred because it is measured in the same units as
the forecast variable.

6. Variance. The variance is another measure of dispersion that is equivalent to
the standard deviation. Because the variance is equal to the standard deviation
squared, it sometimes appears in the statistics view as a very large number. The
variance is calculated as:

Variance = s2 = 1
n − 1

n∑

i=1

(yi − y)2.

7. Skewness. Skewness is a measure of asymmetry of a frequency distribution.
The distributions pictured in Figure 2.5 display negative, positive, and near-zero
skewness. The formula for skewness used by Crystal Ball is

Skewness = 1
n

n∑

i=1

(
yi − y

s

)3

.

The large positive skewness of Year 30 Wealth can be seen in Figure 2.2, and is
measured as 32.20 in Figure 2.4. The fact that the mean of $3.776 million is so
much larger than the median of $2.426 million is also evidence of large positive
skewness. Alternative measures of skewness are

3(Mean − Mode)
Standard Deviation

and
3(Mean − Median)
Standard Deviation

,

either of which you can calculate easily from the Crystal Ball output.
With all else equal, positive skewness in accumulated wealth is desirable;
however, note that here the large positive skewness makes it misleading to
expect to earn the mean wealth. As calculated above, there is less than a 30
percent chance that you will actually accumulate the mean wealth or more.
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FIGURE 2.5 Frequency distributions depicting negative (Skewness = −2), positive (+2), and near-zero
(0.02) skewness at top left, top right, and bottom center, respectively.

8. Kurtosis. Kurtosis is a measure of peakedness, which is equivalent to measuring
tail thickness. The formula for kurtosis used by Crystal Ball is

Kurtosis = 1
n

n∑

i=1

(
yi − y

S

)4

.

If two distributions have the same standard deviation, the one with the higher
kurtosis will have a higher peak and heavier tails. All normal distributions
have a kurtosis of 3.0, and frequency distributions with a kurtosis near 3.0 are
called mesokurtic. Distributions that have significantly higher kurtosis are called
leptokurtic and those with significantly lower kurtosis are called platykurtic.
Some computer programs and authors subtract 3.0 from the definition above
used by Crystal Ball. The technical name for this is then excess kurtosis, but
you may see it too called kurtosis by some authors, so beware. In fact, the
statistic calculated by Excel’s =KURT(ref) command and its Data Analysis tool is
actually excess kurtosis—calculated by a slightly different formula than Crystal
Ball—but is labelled simply as kurtosis.
Figure 2.6 shows an overlay chart for two distributions that have mean zero
and standard deviation one. The distributions with the lower peak is the
standard normal distribution, which has kurtosis = 3.0, as does every normal
distribution. The distribution labeled Mixture has kurtosis = 12.1. It could have
come from a market in which 5% of the time returns have high variability and
95 percent of the time they have low variability (see the file Kurtosis.xls for
details).
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FIGURE 2.6 Overlay chart depicting a mesokurtic standard normal distribution (kurtosis = 3) and a
leptokurtic mixture distribution (kurtosis = 11.7). See the file Kurtosis.xls for details.

9. Coefficient of Variability. The coefficient of variability, also known as the coef-
ficient of variation, is a relative measure of dispersion found as

Coefficient of Variability = s
y
.

It might be more useful than standard deviation for some purposes. For example,
a standard deviation of 10 may be insignificant if the mean is 10,000 (giving
a coefficient of variability = .001) but may be substantial if the mean is 100
(coefficient of variability = .1). Because the mean y and standard deviation s
have the same units, the coefficient of variability is dimensionless.
Crystal Ball calculates it routinely as part of the standard output, but the coeffi-
cient of variability is best used only when all simulated values are positive. When
the values can be both positive or negative, the mean can be zero or negative.
When the mean value is near zero, the coefficient of variability is sensitive to
small changes in the standard deviation, which can limit its usefulness. When
the mean value is negative, use the absolute value of the coefficient of variability
to get a more meaningful relative measure of dispersion.

10. Minimum. The minimum is the smallest value of all the observed forecast values.
Note for models using unbounded-on-the-left stochastic assumptions such as
the normal distribution, the more trials that are run, the smaller the minimum
is likely to be simply because there are more opportunities for Crystal Ball to
generate extreme observations.
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FIGURE 2.7 Plot of 100/
√

n for n in the interval [100, 10000]. This plot
shows how the standard error of the mean decreases as a function of the
number of trials in the simulation. Much of the decrease in standard error is
gained after only 2,000 trials.

11. Maximum. The maximum is the largest value of all the observed forecast values.
For assumptions that are unbounded on the right such as the normal or lognor-
mal distributions, the more trials that are run, the larger the maximum is likely
to be simply because there are more opportunities for Crystal Ball to generate
extreme observations.

12. The Range is the difference between the minimum and the maximum. In
versions of Crystal Ball before 7.2, the Range was listed in the statis-
tics view of the forecast window. For backward compatibility, the com-
mand =CB.GetForeStatFN(range,12) will return the Range statistic, which
is simply the Minimum subtracted from the Maximum. Do not confuse the
CB.GetForeStatFN argument range, which represents the address of a forecast
cell, with the Range statistic described here.

13. Mean Standard Error. The mean standard error is a measure of precision of
the estimate of the mean. The smaller the mean standard error, the greater
the precision. Figure 2.7 shows how the mean standard error decreases in a
nonlinear manner as the number of trials increases for a forecast distribution
having a standard deviation of 100. Most of the precision in the estimate is
gained by 2,000 trials.

Forecast Window Percentiles View

The percentiles view in Figure 2.8 gives the forecast values that are just larger than
the corresponding percent of all the values. For example, the 80th percentile for
Year 30 Wealth is $4,985,234. This means that 80 percent of the forecast values
were less than that amount, while 20 percent were greater than that amount. Note
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FIGURE 2.8 Forecast chart percentiles for accumulated value after 30
years of retirement savings where 50 percent was put into stocks and 50
percent into bonds each year.

that the 50th percentile of $2,425,951 is the same as the value of the median in
Figure 2.4.

VARYING THE ALLOCATIONS

We started with a simple example of allocating 50 percent to each type of fund,
which we call the 50–50 portfolio. Now we will compare forecasts for different
allocations of stocks and bonds to the portfolio.

Decision Table Tool

In file Accumulate.xls, select cell B4, then click on Define > Define Decision. . .. Fill
in the fields in the Define Decision Variable dialog as shown in Figure 2.9. Click
OK and watch cell B4 turn yellow to indicate that a Crystal Ball decision variable is
defined there. After this definition, you can use the Decision Table tool to vary the
allocation into stocks from 10% to 90% in steps of 10%.

Click on Run > Tools > Decision Table. . .. In the Specify target (step 1 of 3)
dialog, Year 30 Wealth will be the only forecast listed (Figure 2.10), so click Next >.
In the Select one or two decisions (step 2 of 3) dialog, Stocks will be the only
available decision variable. Move this rightward to the Chosen Decision Variables
window by clicking >> (Figure 2.11), then click Next >.
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FIGURE 2.9 Dialog window showing settings to specify nine different
allocations into stocks each year. The allocation to stocks varies from 10
percent to 90 percent in steps of 10 percent.

FIGURE 2.10 Step 1 in using the Decision Table tool.
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FIGURE 2.11 Step 2 in using the decision table tool.

The Specify options (step 3 of 3) dialog should look like Figure 2.12. Specify
2000 trials as shown in Figure 2.12 and click Start. Crystal Ball will run 2,000 trials
for each of the nine allocations.

When Crystal Ball finishes its decision table analysis, you should see a new
worksheet with nine Crystal Ball forecasts in cells B2:J2. The value in each cell
is the mean of the forecast for Year 30 Wealth for the corresponding allocation to
stocks that appears in Row 1 of the worksheet.

Trend Chart

Select cells B2:J2, then click Trend Chart. Your trend chart should look like that
depicted in Figure 2.13, which clearly shows how the risk and expected reward
increases as you increase your allocation to stocks.

The certainty bands in Figure 2.13 are centered on the median, so for each of
the nine allocations listed on the horizontal axis, the 10 percent band extends from
the 45th to 55th percentile, the 25 percent band extends from the 37.5th percentile
to the 62.5th percentile, the 50 percent band extends from the 25th percentile to
the 75th percentile, and the 90 percent band extends from the 5th to the 95th
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FIGURE 2.12 Step 3 in using the Decision Table tool.

FIGURE 2.13 Trend chart comparing accumulated values after 30 years of
retirement savings for nine different allocations into stocks and bonds each year.
Year 30 Wealth (1) represents a 10 percent allocation to stocks—the 10–90
portfolio, Year 30 Wealth (2) represents a 20 percent allocation to stocks—the
20–80 portfolio, . . . , and Year 30 Wealth (9) represents a 90 percent allocation to
stocks—the 90–10 portfolio.
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FIGURE 2.14 Overlay chart comparing accumulated value after 30 years of retirement savings for two
different allocations into stocks and bonds each year. Year 30 Wealth (5) represents a 50 percent
allocation to stocks and 50 percent allocation to bonds, and Year 30 Wealth (9) represents a 90 percent
allocation to stocks and 10 percent allocation to bonds.

percentile of each forecast distribution. The slopes of the lines connecting each of
these percentiles provide insight into the behavior of the wealth distribution as we
vary the portfolio allocations to stocks and bonds.

The facts that the spread of the lines increases and that seven of the eight lines
(all but the 5th percentile line) are sloped upwards indicate that greater allocation to
stocks provides greater upside potential for Year 30 Wealth. The negative slope of
the 5th percentile line indicates slightly greater downside risk as more of the portfolio
is allocated to stocks, but for many investors this downside risk is outweighed by
the much greater upside potential.

Overlay Chart

In the worksheet created by Crystal Ball’s decision table analysis, select cell F2,
then hold down the Ctrl Key and click on cell J2. Next, click on Overlay Chart.
Use the hot keys Ctrl-t and Ctrl-d to make your chart look like that in Figure 2.14,
which compares the risk profiles of a 50–50 portfolio to a 90–10 portfolio. The
risk profiles are line graphs depicting the probability on the vertical axis that each
portfolio yields a Year 30 Wealth greater than the corresponding monetary value on
the horizontal axis.
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FIGURE 2.15 Overlay chart comparing accumulated value after 30 years of retirement savings for two
different allocations into stocks and bonds each year. Year 30 Wealth (1) represents a 10 percent
allocation to stocks and 90 percent allocation to bonds, and Year 30 Wealth (9) represents a 90 percent
allocation to stocks and 10 percent allocation to bonds.

The 90–10 portfolio almost completely dominates the 50–50 portfolio in the
sense that the line representing the 90–10 portfolio is above and to the right of the
50–50 line almost everywhere. For Year 30 Wealth values below about $1 million,
the lines are virtually indistinguishable. While very risk-averse investors might prefer
the 50–50 portfolio because it dominates the 90–10 portfolio slightly in the worst
10 percent of the cases, most investors would prefer the 90–10 portfolio’s wealth
distribution because of its near equivalence in the lowest 10 percent and dominance
in the upper 90 percent of the potential returns.

Figure 2.15 presents information comparing the 90–10 portfolio to the 10–90
portfolio that is similar to that provided by Figure 2.14 for comparing the 50–50
portfolio to the 90–10 portfolio. However, because Figure 2.15 is a cumulative
frequency chart, the near dominance of the 90–10 portfolio is manifested by the
90–10 line lying to the right and below the line for the 10–90 portfolio for Year 30
Wealth values above $1 million.
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PRESENTING THE RESULTS

The example in this chapter illustrates both positive and negative aspects of simula-
tion analysis.

On the positive side, Crystal Ball provides a clear picture of the entire distribution
of results with views that can be easily selected to suit the tastes of your audience. For
example, some people prefer frequency distributions, while others prefer cumulative
or reverse cumulative distributions. The statistics window automatically displays
most of the descriptive statistics that decision makers might be interested in seeing.
The percentiles window and trend chart present views that can also be helpful for
interpreting and comparing output distributions. This lets decision makers compare
forecasts on a wide variety of dimensions.

A negative aspect is that output distributions can be compared on so many
dimensions. Until you become accustomed to thinking about distributions of results
rather than single measures such as the mean or median, trying to interpret the
output can be somewhat overwhelming.

Crystal Ball gives you the ability to present the output in a wide variety of ways.
Selecting the best way to communicate your results is a skill that requires some effort
on your part to acquire. This book provides many examples of using Crystal Ball as
a decision tool. Working through the examples and generating the output on your
computer as you read will help you decide what is best for you and your clients.



CHAPTER 3
Building a Crystal Ball Model

M onte Carlo simulation is a tool for modeling uncertainty. Typically, we begin
with a deterministic spreadsheet model of the situation we are analyzing, then

use Crystal Ball to add stochastic assumptions to represent the most important
sources of uncertainty. In the past, stochastic modeling was an endeavor best
undertaken only by highly trained scientists and engineers working on mainframe
computers. Crystal Ball has been developed over the years to make Monte Carlo
simulation accessible to financial analysts and others using Excel on personal
computer workstations rather than coding in a programming language such as C++
or FORTRAN. This chapter goes through the process of starting with a simple
financial model and adding stochastic assumptions to a deterministic model in order
to illustrate the basics of building Crystal Ball models.

SIMULATION MODELING PROCESS

Most analysts facing a business problem follow the typical process for stochastic
modeling:

1. Develop a model that ‘‘behaves like’’ the real problem, with a special consider-
ation of the assumptions—the random or probabilistic input variables.

2. Run a set of trials to learn about the behavior of the simulation model.
3. Continually modify the model until it has credibility with the decision makers.
4. Analyze the forecast (output) statistics and graphics to help make decisions

about the real problem.

The analysis and decisions in step 4 often will lead you to think about new
problems or variants of the old problem, in which case you should go to step 1
to develop a new model or modify the old model to reflect the variant of the old
problem.

Example: AKGolf.xls

For the upcoming golf season, Alaskan Golf (AG) wishes to order a shipment of
golf clubs to offer for sale in its retail stores and affiliated pro shops. It plans to

28



Building a Crystal Ball Model 29

FIGURE 3.1 Deterministic spreadsheet model for
Alaskan Golf purchase decision.

purchase 1,000 HeMan Stick drivers—a helium-filled club that the manufacturer
promises will elevate any player’s game. AG can purchase the drivers at a cost of
$300 each, and plans to sell them during the golf season for $395 each. At the end
of the season, all remaining HeMan Sticks will be sold for $195 to clear the shelves.
AG has asked you to compute their profit if the demand for HeMan Sticks is 800
units during the season. The file AKGolf.xls shown in Figure 3.1 has a deterministic
spreadsheet model for this situation. Cell C11 shows that the profit will be $55,000
from purchasing 1,000 HeMan Sticks at the beginning of the golf season, selling 800
at $395 each during the season, and selling the remaining 200 at $195 each during
the end-of-year sale to clear the shelves.

This spreadsheet can be used to do a ‘‘what-if’’ analysis, where the demand
for drivers in C6 is changed to various values to see the effects on profit in C11.
This is informative but cumbersome, as the analyst must keep track of the input
values for C6 and the corresponding output values in C11, then somehow analyze
the results for a rudimentary form of sensitivity analysis. Monte Carlo simulation
with Crystal Ball can be regarded as a sophisticated form of ‘‘what-if’’ analysis, as
the program will keep track of all these changes during its run. Further, with Crystal
Ball it is easy to change more than one input at a time, as we will see in the next
section.

DEFINING CRYSTAL BALL ASSUMPTIONS

A stochastic input cell in Crystal Ball is called an assumption, while an output cell
is called a forecast. In this section, we will add assumptions and a forecast to the
deterministic model in AKGolf.xls to create a stochastic model.



30 FINANCIAL MODELING WITH CRYSTAL BALL AND EXCEL

TABLE 3.1 Stochastic assumptions to be added to AKGolf.xls.

Assumption Cell Distribution

Demand during Golf Season C6 Triangular(500,800,1500)
Initial Price C8 Uniform(355,395)
Sale Price C10 Uniform(175,195)

Defining Assumptions

Now let’s take into account two sources of uncertainty: (1) the demand for drivers
is stochastic, and (2) the retail clerks and golf professionals who sell the clubs at
retail are allowed to give consumers slight discounts on the listed prices.

For the demand distribution, we assume that the lowest possible demand during
the season is 500 drivers, the largest possible demand is 1,500 drivers, and the most
likely demand is 800 drivers. These three parameters are used to define a triangular
probability distribution in the manner shown below. To keep things simple, we will
assume that all drivers left unsold at the end of the season will be sold during the
end-of-year sale at the sale price in Cell C10.

The golf professionals are allowed to give their customers discounts of up to 10
percent on both the initial prices and the sales prices, which reduce their commissions
proportionately. To model this discounting, we assume that the average initial price
of drivers sold during the season is uniform with a minimum of $355, and a maximum
of $395. The average end-of-season sales price is uniform with a minimum of $175,
and a maximum of $195. Table 3.1 summarizes the Crystal Ball assumptions to be
added to the model in file AKGolf.xls.

Follow the steps below to define the assumptions in Cell C6:

1. Select cell C6, then click on Cell→Define Assumption.
2. Choose the triangular distribution from the distribution gallery (Figure 3.2).
3. Enter the parameter values andaname for the assumption.Bydefault,CBwill look

first for an Excel-defined named, then in the cells at immediate left and just above
for an assumption name. Figure 3.3 shows where to enter the parameter values.

4. Click Enter to see a depiction of the defined distribution. Your distribution
should look like that shown in Figure 3.3. Press OK to return to the spreadsheet.
It is OK to press OK without seeing the depiction, but pressing Enter first is
good practice to check that the entered distribution is what you intend to use.

Cell C6 will turn green to indicate that an assumption cell is defined there. By
following the steps above for cell C6, it should be straightforward for you to define
the stochastic assumptions listed for cells C8 and C10 in Table 3.1.

If an error occurs in step 1, try entering an arbitrary numerical value in the cell
first—Crystal Ball needs to recognize the location as a number cell. In Crystal Ball 7.2
and higher, when you attempt to define an assumption in an empty cell, a value of 0
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FIGURE 3.2 Distribution gallery showing the triangular and
normal distributions. To see all of Crystal Ball’s distributions, click
on All at upper left and use the upper set of scroll bars to move
through the distributions.

FIGURE 3.3 Defining the demand assumption for the Alaskan Golf
purchase decision. Note that both the Name: and the Units: can be specified
with a cell reference.
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FIGURE 3.4 Defining the demand assumption for the Alaskan Golf purchase decision.

will be entered for you automatically. You cannot define an assumption in a cell
that holds an Excel formula. If you try to do so, Crystal Ball will give you an error
message.

Defining Profit as a Forecast Cell

A stochastic output cell in a Crystal Ball model is called a forecast cell. To define
cell C11 as a forecast cell, follow the steps below:

1. Select cell C11, then click on Cell→Define Forecast.
2. Enter the name and units (optional) in the text boxes (Figure 3.4).
3. Click OK.

Cell C11 will turn blue to indicate that a forecast cell is defined there. When
you run the simulation, the forecast values will be calculated and collected for each
run, then displayed graphically in a forecast window.

RUNNING CRYSTAL BALL

It is usually a good idea at this point to run just one iteration of the simulation
to make sure that the calculations appear to be correct. To run one iteration, click
Run→Single Step, then make sure that the model correctly reflects the new values
showing in the assumption cells. This is good practice to help debug the logic of the
model.

When you are ready to run the model, click Run→Run, or just click the
Run icon on the Crystal Ball toolbar. The forecast window should appear auto-
matically. When the simulation stops you can use it to analyze the output
as shown in Chapter 2. Your forecast chart should resemble that shown in
Figure 3.5.
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FIGURE 3.5 Profit forecast for the Alaskan Golf purchase decision. Note that the probability of
negative profit is less than 5 percent.

SOURCES OF ERROR

Monte Carlo simulation modeling is similar to statistical sampling in many respects,
but differs in the type of up-front creativity required by the analyst. To compare and
contrast statistical sampling and simulation modeling, Figure 3.6 shows a stylized
view of steps taken in conducting a statistical study and a simulation study.

In a statistical study, the analyst defines a population to study, specifies numerical
measures to be obtained, and develops a sampling frame—a list of all potential
population elements that could potentially be included in a sample. The statistical
analyst then randomly selects a sample of elements from the sampling frame and
calculates sample statistics such as the mean and standard deviation. These sample
statistics are then used to make inferences about the population using procedures
such as hypothesis tests or confidence intervals. Virtually every introductory statistics
textbook covers these inferential statistical procedures. Note that no matter what
the stated population of interest, it is the sampling frame that actually defines the
population about which inferences can be made in a statistical study.

In a simulation study, the analyst builds a model to represent the business
problem of interest, runs the simulation, analyzes the output, then makes a
decision—which can sometimes be simply to improve the model and rerunning
several times before making a decision about the business problem. Crystal Ball is
designed to run the simulations and provide graphical and numerical summaries
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FIGURE 3.6 Stylized depictions of a statistical study and a
simulation study.

of the output (forecasts) automatically and flawlessly. However, no matter what
the stated business problem, it is the model that defines the problem about which
decisions can be made in a statistical study.

Statistical analysts are concerned with both sampling and nonsampling error.
Sampling error stems from the fact that sample statistics will differ from population
parameters simply by chance. Well-established theory tells us all we need to know
to control sampling error in a well-executed statistical study. Nonsampling error
is more insidious, coming about from faulty methods of data collection, incorrect
sampling methods, errors in recording data, or erroneous entry of the data into the
computer. It is difficult or perhaps even impossible to find and eliminate all sources
of nonsampling error, although many professional statistical consulting firms have
devised methods to eliminate most sources of nonsampling error based on long
experience.

Crystal Ball is well debugged and tested, so there is no worry about the accuracy
of its algorithms. By far, the biggest concern in a simulation study is model error.
Model error is present because any model is an abstraction that cannot take into
account every detail and nuance of the real problem. By definition, a model contains
only the stochastic relationships that are most germane to the problem. All models
are wrong to the extent that they omit minor details. Good models are useful if
they include enough of the major details to help a decision maker reach a properly
informed decision.

It is easy to create a bad model. Model risk is the risk of using the wrong model,
implementing the correct model incorrectly, failing to assess the stochastic inputs
adequately, or omitting important stochastic inputs that should be included. Good
model building is a craft that requires some experience to develop. Fortunately, this
craft can be learned by studying the models in this book and those available from
other sources, such as the Web site www.crystalball.com.

Simulation error is caused by the fact that simulation is a sampling experiment.
This is the same as sampling error in a statistical study. Simulation error should not
be ignored, but is usually a lesser problem than model error because it is relatively
inexpensive to reduce simulation error by simply increasing the number of trials.



Building a Crystal Ball Model 35

It can also be measured and controlled through the variance reduction techniques
described in Appendix C.

CONTROLLING MODEL ERROR

Good models have three basic requirements:

1. Verification. Ensuring that the values and formulas are entered correctly in
Excel.

2. Validation. Assuring that your model faithfully mimics the actual situation or
system.

3. Credibility. Acceptance of your verified and validated model for use by deci-
sion makers.

Verification should be done at every step along the way. The Excel auditing tools
can be very useful for this purpose, and you should strive to make your models as
readable as possible so that you and others can understand the logic of the model
when you come back to it after setting it aside for some time.

Validation is done using a verified model. A validated model will give outputs
that seem to be reasonable to a subject matter expert. Proper validation of a model
is part of the craft of modeling that takes some experience to learn.

A credible model is obtained when a verified and validated model is accepted
for use by the decision makers. Credibility is earned over time, and it is usually best
to keep decision makers informed about your progress in building the model, and
to solicit their input at several points during the model building process. This will
help get ‘‘buy-in’’ from them when it comes to put the model to work.

This chapter describes the basic steps involved in building models. As you go
through the models in the rest of the book, you will begin to get a feel for how best
to go about creating models for your own purposes. The next chapter takes a more
in-depth view of selecting and specifying Crystal Ball assumptions.



CHAPTER 4
Selecting Crystal Ball Assumptions

T his chapter reviews basic concepts of probability and statistics using graphics
from Crystal Ball’s distribution gallery, a portion of which is shown in Figure 4.1.

If you have not had a class in basic probability and statistics at some point in your
life or you need a refresher on these topics, consult a business statistics textbook
such as Mann (2007). This chapter is intended to show the basics of how to specify
probability distributions to be used as stochastic assumptions with Crystal Ball.

Version 7.2 of Crystal Ball has 20 distributions from which to choose when
defining assumptions. To see them, click the All button at the upper left of the
distribution gallery. Six basic distributions are described here along with the binomial
distribution.

CRYSTAL BALL’S BASIC DISTRIBUTIONS

Yes-No

Probabilists named the Bernoulli distribution in honor of the mathematician who
showed analytically around 1700 the truth of the intuitive notion that when a fair
coin is tossed repeatedly, it will come up heads about 50 percent of the time. It
is perhaps the simplest of all probability distributions. The random variable Y has
the Bernoulli distribution if it can take only one of two possible values, y = 0 or
y = 1. The value y = 1 is called a ‘‘success,’’ and y = 0 is called a ‘‘failure’’ in
probability parlance. In Crystal Ball, the Bernoulli distribution is known as the
yes-no distribution.

Crystal Ball calls y = 1 ‘‘yes’’ and y = 0 ‘‘no’’ because these terms often make
sense in a modeling context. For example, Figure 4.2 shows Crystal Ball’s yes-no
distribution for Pr(yes) = 0.5, where y represents the number of heads obtained in
one toss of a fair coin. ‘‘Yes’’ means a head was tossed so y = 1, while ‘‘no’’ means
a tail was tossed so y = 0.

Now consider the type of situation that drew Bernoulli’s interest. The spreadsheet
segment in Figure 4.3 shows a simple model to be used for finding the number of
heads observed when tossing a fair coin five times. Each of the assumptions in
cells B3:B7 are yes-no distributions with Pr(yes) = 0.5, so each assumption cell will

36
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FIGURE 4.1 The basic distributions listed in Crystal Ball’s
distribution gallery.

contain 1 on approximately 50 percent of the trials and 0 on the remaining trials.
Each assumption cell’s value is generated independently of the other cells’ values.
The forecast in cell B8 has the formula =SUM(B3:B7).

Of course, we need not use simulation to model this situation because it is easy
to determine the forecast distribution analytically. However, simulating a situation
for which we know the analytical solution can be comforting. If we get results
with simulation that are in accord with the analytical results, then we have some
assurance that simulation will provide good approximate answers to questions
regarding situations where analytical results are difficult or impossible to attain.

For a simple example of finding an analytical result, consider the spreadsheet
model FiveTosses.xls shown in Figure 4.4, which shows each of the 25 = 32
combinations of 0s and 1s that can occur on five tosses of a fair coin. Each
combination is equally likely to occur. The number of heads in each combination is
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FIGURE 4.2 Yes-no distribution to represent getting a head (y = 1) on one toss of
a fair coin.

FIGURE 4.3 Spreadsheet segment showing model for
determining the distribution of five flips of a fair coin.
Cells B3:B7 are yes-no(0.5) assumptions, and their sum in
cell B8 is a Crystal Ball forecast.
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FIGURE 4.4 Spreadsheet segment showing model for
determining the distribution of five flips of a fair coin.
Cells B3:B7 are yes-no(0.5) assumptions, and their sum in
cell B8 is a Crystal Ball forecast.

found by summing across the row for each combination. So to find the probability of
each of the possible numbers of heads, we simply divide the frequency of occurrence
of {0, 1, 2, 3, 4, 5} by 32, the total number of combinations to get the probabilities
listed in cells C11:C16 in Figure 4.4. These are the probabilities associated with the
binomial(0.5,5) distribution used below.

Binomial

While not included in Crystal Ball’s distribution gallery list of basic assumptions,
the binomial distribution is so closely related to the yes-no distribution that it is
included here and used later in the chapter. The binomial(p,n) is the distribution of



40 FINANCIAL MODELING WITH CRYSTAL BALL AND EXCEL

FIGURE 4.5 Binomial(0.5,5) distribution to represent the number of heads on five tosses of a fair coin.

the sum of a fixed number, n, of Bernoulli trials that all have the same probability of
success, p. Thus, the problem of determining the distribution of the number of heads
in five tosses of a fair coin can be solved by using one Crystal Ball assumption—the
binomial(0.5,5) assumption shown in Figure 4.5.

Figure 4.6 depicts a model that gives the same results as that in Figure 4.3 by
using Crystal Ball to simply generate the number of heads in five tosses from the
distribution in Figure 4.5, and displaying the results in the forecast defined in cell B4
with the Excel formula =B3. The forecast distribution in Figure 4.6 looks almost
identical to the forecast distribution in Figure 4.3, because the differences are due
only to sampling error.

Discrete Uniform

The discrete uniform(L,H) distribution assigns equal probability to the set of integers
between L and H, inclusive. For L = 1 and H = 6, it is the probability distribution
representing the number of spots showing on the top face of a fair die rolled
randomly. To illustrate the use of the discrete uniform, consider a problem with
which Sir Isaac Newton dealt in the seventeenth century (Anděl 2001).

The problem can be stated as follows:

■ Player A has 6 fair dice and wins if he rolls at least one ace (one spot showing
on the top face of a die).

■ Player B has 12 fair dice and wins if he rolls at least two aces.
■ Player C has 18 fair dice and wins if he rolls at least three aces.

Which player has the greatest chance of winning?
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FIGURE 4.6 Simple model to represent the number of heads
observed on five tosses of a fair coin. Cell B3 is a binomial(0.5,5)
assumption. Cell B4 is a forecast cell with the formula =B3.

Most seventeenth-century gamblers felt that because the ratio of rolls to aces
(6:1) is the same for each player, the probability of winning should also be the same
for each player. Newton’s analytical solution to this problem uses the Binomial
distribution and is now considered trivial by probabilists. However, we will use
simulation to find the approximate values of each player winning and compare the
results to Newton’s analytical solution. Figure 4.7 shows a spreadsheet model of the
situation.

The Newton.xls model uses 6 discrete uniform assumptions in cells B5:B10,
12 discrete uniform assumptions in cells E5:E16, and 18 discrete uniform assump-
tions in cells H5:H22 to simulate the result of rolling each die. All 36 of these
assumptions resemble the distribution shown in Figure 4.8 for cell B5, which is
discrete uniform on the integers {1, 2, 3, 4, 5, 6}. Each of the 36 discrete uniform dis-
tributions generates observations independently of the others during the simulation
runs.

In the cell to the immediate right of each die’s result in Newton.xls is an Excel
IF function that checks to see whether the result is a ace or not. For example, cell C5
contains the command =IF(B5=1,1,0), which puts a 1 in cell C5 if the assumption in
B5 delivers a 1 during any iteration, and a 0 otherwise. This is an example of an
indicator variable, which is a useful modeling concept that we use often throughout
this book. Cells C11, F17, and I23 find the sums of the indicator variables in the
cells directly above them, C5:C10, F5:F16, and I5:I22, respectively. The cells



42 FINANCIAL MODELING WITH CRYSTAL BALL AND EXCEL

FIGURE 4.7 Spreadsheet segment showing model for
Newton’s dice problem.

FIGURE 4.8 Discrete uniform distribution used for modeling the roll of one die for
Newton’s dice problem.
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TABLE 4.1 Table of values for Index in the Crystal Ball
function =CB.GetForeStatFN(Range,Index) and the
corresponding forecast statistic. See Chapter 2 for a
definition of each statistic.

Index Statistic

1 Trials
2 Mean
3 Median
4 Mode
5 Standard deviation
6 Variance
7 Skewness
8 Kurtosis
9 Coefficient of variability
10 Minimum
11 Maximum
12 Range
13 Mean standard error

labeled A Wins? B Wins? and C Wins? are indicator variables to detect when the
number of aces for A is greater than or equal to one, the number of aces for B is
greater than or equal to two, and the number of aces for C is greater than or equal
to three, respectively. These cells, C12, F18, and I24 are defined as Crystal Ball
forecast cells.

Finally, cells C13, F19, and I25 use the =CB.GetForeStatFN(Range,Index)
command to find the mean of each forecast. The arguments for this command are
Range, which is simply a reference to a Crystal Ball forecast cell, and Index, which
is an integer between 1 and 13. Specify the integer for Index that corresponds to
the desired forecast statistic listed in Table 4.1. For example, we use Index = 2 in
Newton.xls because we want the means of the indicator variables in cells C13, F19,
and I25.

The resulting means after 10,000 runs are shown in cells C13, F19, and I25
to be 0.6628, 0.6205, and 0.5933. These values can be compared to the known
probabilities obtained with the binomial distribution: 0.6651, 0.6187, and 0.5973,
respectively. Thus, the solution to the problem is that Player A has the greatest
chance of winning, followed by Player B, then by Player C. In a later chapter, we
will see how to determine the precision of the estimates from simulation models.

Uniform

The uniform distribution is the simplest of all continuous probability distributions.
It has only two parameters, the minimum and maximum values. It produces any
continuous value between the minimum and maximum with equal likelihood. The



44 FINANCIAL MODELING WITH CRYSTAL BALL AND EXCEL

FIGURE 4.9 Continuous uniform distribution used for modeling a firm’s revenue, where the minimum
possible value is $90, the maximum is $110, and all values in between are equally likely to occur.

uniform distribution depicted in the dialog window shown in Figure 4.9 models a
situation where a firm’s revenues range from $90 to $110, and all values in between
are equally likely to occur.

In dialog windows for its discrete distributions, Crystal Ball displays the possible
values of the random variable on the horizontal axis and the associated probabilities
on the vertical axis, as in Figure 4.8. For continuous distributions such as the
uniform, Crystal Ball does not display values on the vertical axis because probability
for continuous random variables is associated with intervals on the horizontal axis
and not with single values. Because they represent probabilities for intervals rather
than single numbers, the plots for continuous distributions are graphs of probability
density functions, or simply PDFs.

Use the uniform distribution when you know the minimum and the maximum
values, but not a most likely value. The uniform distribution is completely spec-
ified by its two parameters, Minimum and Maximum. Because all values between
Minimum and Maximum are equally likely to occur, its PDF has a uniform height
over that range.

The uniform is sometimes called the ‘‘distribution of maximum ignorance,’’ and
should be replaced with a better estimate if one becomes available in later stages of
the modeling process. However, there are some situations where the uniform may
be the best distribution; for example, to model (1) where a leak might occur on a
pipeline, or (2) time to failure of a component after a ‘‘burn-in’’ period, but before
the required time to replace it.

The spreadsheet segment in Uniform.xls shown in Figure 4.10 models the
situation where a firm’s revenues follow the uniform(90,110) distribution and
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FIGURE 4.10 Spreadsheet model for situation where a firm’s
revenues are modeled as uniform(90,110), and where expenses
are modeled as uniform(40,60). The resulting distribution of
profit is triangular(30,50,70).

expenses follow the uniform(40,60) distribution. The difference, profit, is defined as
a forecast in cell B5, and a forecast chart for it has been copied and pasted onto
the spreadsheet. It can be shown with the mathematical method of convolution
(e.g., see Vose 2000) that the theoretical distribution of profit in this example is
triangular(30,50,70), which is verified by the forecast chart in Figure 4.10.

Triangular

The triangular distribution is appropriate for use when you have little or no data
available, but you know the minimum, maximum, and most likely values of a
random variable. The triangular distribution is completely specified by its three
parameters, Minimum, Likeliest, and Maximum. These three values are sufficient to
determine the triangular shape shown in the icon. Of course, Minimum must be less
than Maximum, and Likeliest must be in between (or equal to one of) these values.
Figure 4.11 depicts a triangular(90,100,110) distribution.

The spreadsheet segment in Triangular.xls shown in Figure 4.12 models the
situation where a firm’s revenues follow the triangular(90,100,110) distribution
and expenses follow the triangular(45,50,55) distribution. The difference, profit, is
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FIGURE 4.11 Triangular(90,100,110) assumption used for modeling revenue in
Figure 4.12.

FIGURE 4.12 Spreadsheet model for situation where a firm’s
revenues are modeled as triangular(90,100,110), and where
expenses are modeled as triangular(45,50,55).
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defined as a forecast in cell B5, and a forecast chart for it has been copied and pasted
onto the spreadsheet. Note how the distribution for profit has a bell shape similar
to the normal distribution to be discussed next.

Because it is often used as a first estimate of the distribution, the triangular
distribution is applicable to many situations. When using it, you may wish to consult
with a subject matter expert (e.g., an engineer, cost analyst, or project manager) to
determine which values to use for the parameters.

Compared to the normal distribution, the triangular distribution over-
emphasizes the tails and underemphasizes the middle values. Always try to replace
Triangular distributions with better estimates if they become available in later stages
of the modeling process.

Normal

The normal distribution is perhaps the most widely known continuous probability
distribution because it describes many natural phenomena. It has the familiar bell
shape that Crystal Ball uses for its Define Assumption icon.

The normal distribution is specified by its two parameters, the Mean and
Std Dev (standard deviation). Because it is symmetrical, the mean is equal to the
median (50th percentile). The mode (point on the horizontal axis at which the PDF
is highest) is also equal to the mean and median. Values simulated from the normal
distribution are more likely to be close to the mean than far away. Figure 4.13 shows
a normal distribution with mean 10 percent and standard deviation 5 percent.

Some examples of what might be modeled by a normal distribution include (1)
the rate of return on stocks, (2) the rate of inflation, (3) sales revenue, (4) heights of

FIGURE 4.13 Normal(10%, 5%) distribution.
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FIGURE 4.14 File CLT.xls built to demonstrate the effects of the Central Limit Theorem. Each day’s
sales is generated independently from one of the binomial(0.75,3) assumptions in Cells B4:B33. This
assumption appears at the bottom of the spreadsheet. Note that rows 12 through 31 are hidden.

people, or (5) time to complete work composed of many individual tasks, to name
a few possible applications. A well-known mathematical result—the Central Limit
Theorem (CLT)—explains why the normal distribution does an adequate job of
describing many natural phenomena. Not every random variable encountered when
building Crystal Ball models is normally distributed, but the Normal often works
well as a first model for many stochastic assumptions.

Central Limit Effect The central limit effect is what causes the normal distribution
to be a suitable choice for modeling many natural phenomena. The model in
Figure 4.14 and the forecast windows in Figures 4.15, 4.16, and 4.17 illustrate this
effect.

The file CLT.xls generates daily sales with a binomial(0.75,3) distribution,
a skewed distribution that is far from normally distributed, as can be seen in
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FIGURE 4.15 Distribution of sales for one day. Each day’s sales is
generated from the binomial(0.75,3) distribution, and this forecast chart
depicts that distribution.

FIGURE 4.16 Distribution of sum of seven days’ sales. Each day’s sales is
generated from the binomial(0.75,3) distribution. This forecast chart
shows how the distribution of weekly sales is bell-shaped, but not quite a
normal distribution.
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FIGURE 4.17 Distribution of sum of 30 days’ sales. Each day’s sales
is generated from the binomial(0.75,3) distribution. This forecast
chart shows how the distribution of monthly sales is close to normal
because of the central limit effect. The curve superimposed on the
histogram is the PDF for the normal distribution with mean and
standard deviation parameters that are equal to the sample mean and
standard deviation statistics calculated from the 10,000 simulated
values.

Figure 4.15. However, when we look at the distribution of weekly sales, which is
the sum of seven days’ sales, we see the mound-shaped distribution that is shown in
Figure 4.16. The distribution of monthly sales, the sum of 30 days’ sales depicted in
Figure 4.17, very much resembles the bell-shaped probability density function (PDF)
of the normal distribution, which is superimposed on the frequency chart of the
forecast values for comparison.

In financial modeling, the random variables of interest often are measures
produced as sums of other random variables. For example, the normal distribution
is often used to model rates of return. This makes it easy to analyze risks associated
with a single period without using Crystal Ball. For example, if we know that the
rate of return on Stock A is normally distributed with mean 10 percent and standard
deviation 15 percent, then the probability of a negative return is 0.2525. This can
be seen in Figure 4.18, where the probability of a negative return is found in cell B5
with the command =NORMDIST(0,B3,B4,TRUE). The file also uses Crystal Ball with
10,000 iterations find an approximate value of 25.23 percent for this probability.

Mixture of Normals Sometimes you may be interested in modeling a situation where
a stochastic input is a mixture of two distributions. For example, suppose you
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FIGURE 4.18 This file uses Excel’s NORMDIST distribution
function and Crystal Ball to find the probability that the rate
of return is negative for a stock with mean return of 10
percent and standard deviation of 15 percent.

are interested in simulating stock rates of return for a market in which one of
two regimes will prevail: Regime 1, where monthly rates of returns are normally
distributed with mean µ = 1 percent and standard deviation σ = 1 percent, and
Regime 2, where monthly rates of returns are normally distributed with mean µ = 1
percent and standard deviation σ = 3 percent. The market is in Regime 1 on 80
percent of the months and in Regime 2 on 20 percent of the months. See Figure 4.19
and the file Mixture Model.xls.

In the mixture model simulation depicted in Figure 4.19, a yes-no assumption
is used in cell A9 to generate values of either 0 or 1. The prevailing regime is
determined from the yes-no assumption with the formula =2-A9. Thus, when the
yes-no assumption cell is 1, cell B9 will indicate Regime 1, and when the yes-no
assumption is 0, cell B9 will indicate Regime 2. Because a value of 1 is generated on
about 80 percent of the trials as shown in cell B4, Regime 1 prevails about 80 percent
of the time and Regime 2 prevails on the rest of the trials. The normally distributed
rate of return is generated in cell E9 from an assumption whose parameters depend
on the prevailing regime. The total return in cell A11 is mound-shaped but has
heavier tails than a normal distribution.
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FIGURE 4.19 Mixture model for generating rates of return
on a stock under two different regimes. The forecast window
pasted at the bottom of the spreadsheet has the PDF of a
normal distribution superimposed on it to show how the
mixture of two normal distributions is mound-shaped but has
a higher peak and heavier tails than a single normal
distribution with mean and standard deviation parameters
that are equal to the sample mean and standard deviation
statistics calculated from the 10,000 simulated values.

Lognormal

Unlike the normal distribution, the lognormal distribution is bounded on the left
by zero; however, it is unbounded on the right just as the normal distribution. This
makes it useful for situations where values are positively skewed and cannot be
negative, such as the total return on stock when the stockholder’s potential loss is
limited to the amount he or she has invested, or for sales of a product, which cannot
be negative.

The lognormal distribution takes its name from the fact that it represents a
random variable whose natural logarithm follows the normal distribution. Like the
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FIGURE 4.20 Model of cumulative effect of growth of $100 over a
20-year period where each year’s return is a lognormally distributed
random variable with mean 1.1734 and standard deviation 0.3607 in
cells E1 and E2, respectively. Note that rows 6 through 22 are hidden.

normal distribution, it has two parameters, Mean and Std. Dev. File Lognormal.xls
in Figure 4.20 has a model where each year’s return is a lognormally distributed
random variable with mean 1.1734 and standard deviation 0.3607 in cells F1 and
F2, respectively. (Notice that if you click in the Mean field you will see that the
mean is defined as an absolute reference $F$1. This facilitates copying and pasting
Crystal Ball data from one assumption cell to another. The Std. Dev. is defined in
the same way, which you can verify by clicking in that field.) The model generates
annual total returns independently each year from the same lognormal distribution,
and the forecast in cell C24 shows the potential distribution of wealth at the end of
Year 2026. This distribution appears in Figure 4.21.

Many variables in financial modeling are suitable for use of the lognormal
distribution; for example, stock or real estate prices, critical pharmaceutical doses,
salaries in a company, amount of oil in a reservoir, or incubation time for an
infectious disease. This comes about from the central limit effect where random
variables arise as products of other variables. Products can be found as sums of
logarithms, so the CLT implies that the sum of the logarithms will be normal. If
the logarithm of a random variable is normally distributed, then the variable is
lognormally distributed.
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FIGURE 4.21 Forecast window from model shown in Figure 4.20 of cumulative effect of growth of
$100 over a 20-year period where each year’s return is a lognormally distributed random variable with
mean 1.1734 and standard deviation 0.3607 in cells F1 and F2, respectively.

USING HISTORICAL DATA TO CHOOSE DISTRIBUTIONS

In the Lognormal.xls model, we used historical data to estimate the mean and
standard deviation for future returns. These data are located on the Data worksheet
of the Lognormal.xls file. If you have historical data on an input variable, there are
at least two different methods for using them in a Crystal Ball model: (1) direct
sampling, and (2) sampling from a fitted distribution.

Direct Sampling

This method uses the data values directly in the simulation. For example, we can
calculate the historical annual returns on a stock and use them for projecting future
returns. This is illustrated in the file DirectSampling.xls shown in Figure 4.22, which
has historical total returns for small cap stocks for each year between 1926 and
2002 inclusive.

The assumptions in cells B5:B23 are identical, but generate independent obser-
vations from a Discrete Uniform distribution on the integers {1926, 1927, . . . ,
2002}. These integers correspond to the rows of the array in cells A2:B80 on the
Data worksheet, which are used with Excel lookup commands in Cells C5:C23 on
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FIGURE 4.22 Crystal Ball model to
demonstrate how to use direct
sampling of historical data for
predicting future returns. Each of
cells B5:B23 has a discrete
uniform(1926,2002) distribution
representing the years of the return
data in a separate worksheet. Each
time a year is selected randomly in
column B, the corresponding return is
placed in the same row of column C.

the Model worksheet. For instance, cell C5 has the command

=VLOOKUP(B5,Data!$A$2:$B$78,2,FALSE)

which takes the randomly generated year from cell B5 and finds the corresponding
return to put in cell C5. This method is equivalent to writing each return on a slip
of paper and placing in a bowl, then sampling with replacement from the bowl to
determine the return for each year.
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The downsides to the direct sampling approach are that

■ The simulation can only reproduce what has already happened, and
■ The number of trials usually exceeds the number of data values available, so

that you will be using the same values many times over.

Thus, using direct sampling can lead to a false sense of precision and is not generally
recommended.

Sampling from a Fitted Distribution
In this method, Crystal Ball uses standard techniques of statistical inference to
fit a theoretical distribution to your data using one of the distribution gallery’s
continuous distributions. The fitting and selection is nearly automatic, although it
does require some judgment and subject matter knowledge to use most effectively.

If a suitable theoretical distribution can be found, sampling from a fitted distri-
bution is preferred over direct sampling or sampling from an empirical distribution
because:

■ Historical datasets typically contain relatively few observations. Fewer than 100
is not uncommon in some finance applications (as in the example we use here),
and so are ‘‘rough.’’ A fitted distribution will typically be ‘‘smooth’’ and might
well better represent the underlying stochastic process generating the data than
does the direct sample from a limited number of past observations.

■ Unless extra tail information is appended to the historical data, it cannot generate
values less than the minimum nor greater than the maximum. In many models,
the tails of the distribution produce values that lead to some of the model’s most
interesting results and thus provide useful information. For example, in ‘‘stress-
testing’’ a portfolio, analysts evaluate the impact of potential future occurrences
of events that could cause problems in a portfolio. Such stress scenarios often
come from the tails of the input distributions affecting the portfolio.

■ There is often good reason to expect that a theoretical distribution is applicable
in many financial applications. For example, many researchers have found that
annual stock returns often appear to be normally distributed, and stock prices
generally follow lognormal distributions.

■ Fitted distributions are efficient. Direct sampling requires storing all n obser-
vations for reuse. Sampling from a fitted distribution is accomplished for all
of Crystal Ball’s continuous distributions with algorithms that its authors have
embedded in the program code.

■ Fitted distributions are easier to change. For example, if the historical volatility
of a stock is 20 percent, but you think it is likely to double, all you have to do
is change the standard deviations of the assumptions you are using to generate
returns.

In situations for which we know that there is a limit on how large or small a
generated value can be, we can set a limit on our generated values for any distribution
with a truncation limit in Crystal Ball.
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FIGURE 4.23 Dialog for step 1 of fitting a distribution to data.

Fitting Distributions to Data

Crystal Ball provides the button Fit. . . in the distribution gallery window to fit a
single distribution to a source of data, and Run→Tools→Batch Fit. . . to fit more
than one distribution to multiple sources of data.

Follow these steps for an example of how to fit a distribution to empirical data
with Fit. . .

1. Open the file Lognormal.xls. Select the Data worksheet, then click on cell C2.
Choose Define→Define Assumption. . . from the top menu or click on the define
assumption icon on the Crystal Ball toolbar. You should see a dialog box like
that shown in Figure 4.23.

2. Click on the Fit. . . button at the bottom right center of the dialog box in
Figure 4.23. Enter the range B2:B78 into the Range: field of the dialog
box as shown in Figure 4.24. For this example, choose the radio buttons
to select All continuous distributions and the Anderson-Darling ranking method
as shown in the Fit Distribution dialog in Figure 4.24. Then click the OK
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FIGURE 4.24 Dialog for step 2 of fitting a distribution to data.

button on the Fit Distribution dialog. You will get a comparison chart simi-
lar to that shown in Figure 4.25. By clicking on Next >> and << Previous,
you can see plots of the histogram of the data and the theoretical distribu-
tion functions for the various fitted distributions. The Cumulative Frequency
or Reverse Cumulative Frequency views provide better comparisons of the
histogram to the theoretical distribution than does the Frequency view.

3. Click << Previous or Next >> until you see Fit #7: Lognormal. Then click
Accept and you will see the dialog shown in Figure 4.26. This assumption
can be copied and pasted to other cells in the model such as Cells B5:B24 on
the Model worksheet in Lognormal.xls using the Crystal Ball Copy Data and
Paste Data commands.

Goodness-of-Fit Testing Crystal Ball has built into its distribution-fitting procedure
the algorithms to estimate parameters and assess the goodness of fit between the
empirical distribution function (EDF) of your dataset and the cumulative distribution
function (CDF) of each applicable continuous distribution in its distribution gallery.
Not all of the distributions in the gallery are applicable to all datasets. For example,
a lognormal distribution will not be fit to a dataset containing negative values
because the support of the lognormal distribution is bounded from below by zero.
Depending on your data, you may see a message from Crystal Ball warning you of
this fact.
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FIGURE 4.25 Comparison chart for fitting a distribution to data.

FIGURE 4.26 Lognormal distribution fit to data in file Lognormal.xls.
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This section gives a brief description of the procedures used by Crystal Ball for
fitting distributions. Suppose a random sample of size n is generated by a stochastic
process governed by a cumulative distribution function F(x) (the CDF). Intuitively,
the goodness of fit can be tested by measuring the ‘‘closeness’’ of the EDF, Fn(x), to
the theoretical CDF, F(x).

Eyeball Test One of the best ways to assess goodness of fit is simply to use the
‘‘eyeball test,’’ by comparing the plots of the EDF and each candidate CDF. Crystal
Ball helps you do this with frequency charts and cumulative frequency charts as part
of its fitting procedure. By specifying the Cumulative Frequency view and clicking
on Next >> and << Previous as described above for the data in Lognormal.xls,
you can use the eyeball test to assess the fit between the EDF of your data and the
CDF of each of Crystal Ball’s applicable distributions.

For those who prefer a quantitative measure of goodness of fit, Crystal Ball
also calculates the values of three test statistics under the hypothesis that the data
were generated from its applicable theoretical, continuous distributions. Figure 4.27
shows the goodness-of-fit statistics calculated for the data in Lognormal.xls. In
Crystal Ball Version 7, the p-values for these test statistics are not provided, but
they may be found or estimated using a reference book such as D’Agostino and
Stephens (1986) or an advanced textbook on statistical analysis. These statistics are
used for ordering the distributions according to the ranking method you specify in
the dialog window shown in Figure 4.24. For example, we chose to rank with the

FIGURE 4.27 Goodness-of-fit statistics for data in file Lognormal.xls.
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Anderson-Darling statistic and the lognormal distribution appears as the seventh
entry in the table shown in Figure 4.27.

Do not assume that the highest ranking distributions in the table necessarily
correspond to the best distributions for use in your model. The choice of the best
distribution depends on its use in your model and the judgement of a subject matter
expert (SME). For example, while the logistic distribution is ranked highest in
Figure 4.27, the lognormal distribution is a better choice for total return in this case
because of the product version of the central limit effect described above.

Caveats Things to keep in mind when using historical data include:

■ Empirical data are usually not available, at least not immediately. For new
offerings of products or services, there may well be no historical data at all, and
for improved offerings of products or services, the historical data may not be
indicative of what is to come in the future. In situations like these, you will need
to specify assumptions based on subject matter expert input. Of course, once
the new offering is in place, you should have processes in place to record data
on the stochastic variables of interest for reparameterizing your model when it
is updated.

■ Some information may be biased or otherwise inappropriate, simply because the
data collector did not anticipate that the data would be used for risk analysis
or financial modeling. Thus, sometimes the data may be a mix of observations
from two or more stochastic variables, or be collected over a period of time
where the parameters (for example, the mean or standard deviation) for a single
variable may have changed over time. This may make the historical data invalid
for use in fitting distributions.

■ As mentioned above, fitting a distribution to data requires judgment to determine
whether the ‘‘best-fit’’ distribution is appropriate. The ability to make this
judgement is developed with experience. Novices may have to rely on SMEs for
their judgement.

The good news is that the results of interest in most models often depend on the
mean and the variance of inputs more than on the specific probability distributions
used. If you find yourself in a situation where potential users of your model are
questioning the appropriateness of the input distributions, you may find it helpful
to try different distributions. As long as the different distributions have the same
mean and variance, the central limit effect will apply to most realistic models and the
forecast distributions will be relatively insensitive to the choices of the distribution
families of the assumptions.

Paradoxically, while good empirical data are the best source for helping to
determine which assumptions to choose from the distribution gallery, you should
not rely on them too much. Subject matter knowledge and good judgment are also
necessary ingredients for constructing good models.



62 FINANCIAL MODELING WITH CRYSTAL BALL AND EXCEL

What If No Historical Data Are Available?

Financial models are often built to analyze situations that do not yet exist; for
example, new products or projects in which the company has little or no historical
data to help choose assumptions. In this case, you will have to make your own
subjective estimates of which assumptions to use in the model, or solicit the
help of a SME. The uniform and triangular distributions are often good first
choices.

The uniform distribution is sometimes called the ‘‘distribution of maximum
ignorance’’ because it requires only two parameters to specify, the Minimum and
the Maximum. By considering every value between the minimum and maximum to
be equally likely to occur, we are being very conservative in our approach. Quite
often SMEs who know nothing about probability distributions will be able to help
you choose the parameters of the uniform distribution simply by your asking for the
highest and lowest possible values that they think may occur.

Depending on the distribution, you may define the distribution using different
combinations of the mean, standard deviation, minimum, maximum, or selected
percentiles. For example, Figure 4.28 shows the alternative ways for defining a
lognormal distribution. The possible parameter sets that can be used depend on the
distribution to be defined. It is sometimes easier to elicit estimates of percentiles

FIGURE 4.28 Parameters drop-down menu for the lognormal distribution.
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or other parameters for assumptions from SMEs, and the Parameters menu was
developed to make easier the task of defining distributions. Expert opinion is usually
more readily available than empirical data, but you should be prepared to justify
and/or defend your choices no matter how you selected your assumptions.

If you have a better feel for the situation than maximally ignorant, you may
want to consider using the triangular distribution. Like the uniform, it requires a
minimum and maximum values, but it also requires a Likeliest value. This is also
known as the mode of the distribution and specifies the point on the horizontal axis
above which the density is the highest.

Building a model without historical data can provide many valuable insights.
However, as soon as possible, you should collect data on the stochastic variables
driving your forecasts and parameterize the assumptions. Among other reasons, this
will also allow you to estimate any correlations between the assumptions, which can
make a huge difference in the forecast results.

SPECIFYING CORRELATIONS

Crystal Ball gives you the ability to specify correlations between assumptions in your
models. This is important because quite often several assumptions will be affected by
the same factor. For example, returns on stocks all tend to be affected by the same
market forces, although to varying degrees. The correlation coefficient measures the
degree to which one assumption moves with another.

The type of correlation known to most people from their college statistics
courses is the Pearson product-moment correlation coefficient. This is the same
correlation coefficient that Excel calculates with its =CORREL(array1,array2) com-
mand. However, it turns out that the Pearson coefficient does not generalize easily
to all distributions, so Crystal Ball uses the Spearman rank correlation coefficient
instead of the Pearson. In this section, we elaborate on the distinction between
Pearson and Spearman correlation coefficients.

Pearson Correlation Statistic If we have n observations on a random variable X
denoted as x1, x2, . . . , xn, and n observations on another random variable Y denoted
as y1, y2, . . . , yn, we can calculate the degree of linear association between them
with the Pearson correlation coefficient, rxy. This coefficient ranges from −1 to
+1. If X tends to be above (below) its mean value whenever Y is above (below)
its mean value, then rxy will be close to +1. Conversely, if X tends to be below
(above) its mean value whenever Y is above (below) its mean value, then rxy will be
close to −1. Simply put, the correlation coefficient is a measure of the tendency for
one random variable’s observations to follow the movement of another variable’s
observations.

The Pearson correlation coefficient is calculated by first finding the mean of each
set of observations as

x =
∑n

i=1 xi

n
and y =

∑n
i=1 yi

n
.
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FIGURE 4.29 Comparison of correlation coefficients for
data in PearsonSpearman.xls. Note that rows 6 through
79 are hidden.

Then the Pearson product-moment correlation statistic is calculated as

rxy =
∑n

i=1(xi − x)(yi − y)
√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
.

The spreadsheet shown in Figure 4.29 illustrates the calculation of correlations
in Excel. If we denote as x1, x2, . . . , x79 the total returns on small cap stocks
in cells B2:B80, and denote as y1, y2, . . . , y79 the total returns on large cap
stocks in cells C2:C80, then the Excel formula =AVERAGE(B2:B80) calculates
the sample mean x, =AVERAGE(C2:C80) calculates the sample mean y, and
=CORREL(B2:B80,C2:C80) calculates the Pearson correlation statistic, rxy.

Spearman (Rank) Correlation Statistic The Spearman, or rank, correlation statistic,
rS

xy, is a nonparametric estimator of the correlation coefficient that is calculated
from the ranks of the observations. Crystal Ball uses Spearman correlations because
the Pearson correlation does not work well in simulation algorithms for every one
of Crystal Ball’s distributions, but the Spearman correlation coefficient does. The
Spearman correlation coefficient is the Pearson correlation coefficient calculated for
the ranks of the observed values of X and Y.

The rank of an observation is simply its position number in an ordered
array when the data are sorted in ascending order. Note that by default, the
Excel command =Rank(Number,Ref,Order) will calculate the rank of Number in
the (ordered or unordered) array Ref based on descending order if Order = 0
or is blank. The discussion below is applicable whether the data are sorted in
ascending or descending order; however, for our purposes, it is easy to change to
ascending order by specifying Order = 1. Ascending order is used conventionally
by most statisticians in assigning ranks. For example, if the observed values of
X are

1, 7, 3, 1, 0, 1, 5, 2, 7, 3
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when arrayed in ascending order they are

0, 1, 1, 1, 2, 3, 3, 5, 7, 7

With ties in ranks, assign the average rank to each tied value. Excel does not assign
average ranks by default with its =RANK(Number,Ref,Order) function, but this can
be accomplished by using a correction given on an Excel help page:

=[COUNT(Ref) + 1 − RANK(Number,Ref,0)− RANK(Number,Ref,1)]/2.

This is illustrated in the table below:

i xi yi rank(xi) rank(yi)

1 1 7 3 9.5
2 7 3 9.5 3.5
3 3 6 6.5 7.5
4 1 7 3 9.5
5 0 6 1 7.5
6 1 5 3 6
7 5 4 8 5
8 2 3 5 3.5
9 7 2 9.5 1.5
10 3 2 6.5 1.5

Let X′ = rank(xi) and Y ′ = rank(yi). The Spearman rank correlation statistic is
the Pearson product moment correlation calculated from the ranks,

rS
xy =

∑n
i=1(X′

i − X′)(Y ′
i − Y ′

i)√∑n
i=1(X′

i − X′)2
∑n

i=1(Y ′
i − Y ′

i)2

The calculations are illustrated in the file PearsonSpearman.xls. If there are no ties
in the ranks, a shortcut method for calculating Spearman correlation is

rS
xy = 1 − 6

∑n
i=1 d2

i

n(n2 − 1)
,

where di = x′
i − y′

i.

Using Crystal Ball to Calculate Correlations between Two
Assumptions

You can calculate Spearman correlations between two cell ranges using Crystal
Ball’s Correlate. . . button on the Define Assumption dialog window. Using the steps
listed below, this was done for the assumptions in cells H2 and I2 from the data in
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cells B2:B78 and C2:C78, respectively, in the spreadsheet PearsonSpearman.xls.
Cell H2 is lognormal(1.18,0.36), and cell I2 is lognormal(1.13,0.22).

The procedure for calculating the correlation between cells H2 and I2 follows.
Once you go through this, you should be able to define correlation between any two
pairs of assumptions for which you have data.

1. Select either cell H2 or cell I2, then click on Define→Define Assumption. . . For
this example, I have selected cell H2, SC Stocks, as shown in Figure 4.30.

2. Click on the Correlate. . . button to get the Define Correlation dialog shown
in Figure 4.31, then click on Choose. . . to get the Choose Assumptions dialog
shown in Figure 4.32.

3. Click on the check box next to LC Stocks as shown in Figure 4.32, then click
OK. The Define Correlation dialog will appear.

4. Click on the Calc. . . button to get the Calculate Correlation Coefficient window
shown in Figure 4.33. Enter the cell ranges B2:B78 and C2:C78 as shown in
Figure 4.33, then click OK. You will see the Spearman correlation coefficient
value 0.81119, which is the same as the value shown in cell A81 in Figure 4.29.

5. Click OK to get back to the Define Assumption dialog, which now has
(Correlated) added to the label in the dialog window title bar to indicate
that the assumption is correlated with at least one other assumption in the
spreadsheet.

6. Click OK again to close the dialog.

FIGURE 4.30 Define Assumption dialog for cell H2 in file PearsonSpearman.xls. The Correlate. . .

button is second from right at the bottom of the dialog window.
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FIGURE 4.31 Define Correlation dialog for cell H2 in file
PearsonSpearman.xls.

FIGURE 4.32 Choose Assumptions dialog for cell H2 in file
PearsonSpearman.xls.

Batch Fit

Crystal Ball’s Batch Fit feature enables you to fit distributions to and calculate
correlations for several sets of data in one set of steps. In this section we will fit
lognormal distributions and find correlations for monthly total returns observed
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FIGURE 4.33 Calculate Correlation Coefficient dialog for cell H2 in
file PearsonSpearman.xls.

FIGURE 4.34 First step in using Batch Fit with data in file BatchFit.xls.

during the period January 1998 through December 2004. These returns are in the
file BatchFit.xls.

Follow these steps to use Batch Fit:

1. Click on Run→Tools→Batch Fit. . . in the top menu. The Select distributions
(step 1 of 3) dialog window will appear.
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FIGURE 4.35 Second step in using Batch Fit with data in file BatchFit.xls.

FIGURE 4.36 Third step in using Batch Fit with data in file BatchFit.xls.
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FIGURE 4.37 Output from using Batch Fit with data in file BatchFit.xls.

2. Move all distributions except lognormal from the Selected Distributions field
to the Available Distributions field as shown in Figure 4.34. Move distributions
back and forth between these fields using the << and >> buttons found between
the two fields. With lognormal as the only selected distribution, click Next.

3. Specify the location of the data, punch the same radio buttons, and check the
box indicated in Figure 4.35, then click Next.

4. Specify the location of the output, punch the same radio buttons, and check the
boxes indicated in Figure 4.36, then click Start.

Your spreadsheet should resemble Figure 4.37.
Cells G5:I5 in Figure 4.37 are now Crystal Ball lognormal assumptions

having means, standard deviations, and correlations calculated from the data in
cells B4:D87. They can be copied to other cells in your spreadsheet using Crystal
Ball’s CopyData and PasteData commands.



CHAPTER 5
Using Decision Variables

T he first four chapters covered the basics of specifying Crystal Ball assumptions
and analyzing Crystal Ball forecasts. This chapter covers the basics of defining

and using Crystal Ball decision variables and its decision support tools, Decision
Table and OptQuest.

DEFINING DECISION VARIABLES

Decision variables are spreadsheet cells in which the values are varied systemat-
ically rather than sampled randomly, as are assumptions. They can be cells that
hold values dictated by actual decisions or cells for which we just want to see
the effect of one or two variables on selected forecasts in a form of sensitivity
analysis.

As an example of the latter, consider the model depicted in Figure 5.1,
TwoCorrelatedAssets.xls, where we have two correlated assets and we wish to
vary the correlation coefficient to see the effect on the rate of return of a portfolio
composed of the two assets. To keep things simple we will simulate a model for
which we know the true answer so that we can compare the simulation results to
the truth.

Consider a portfolio composed of two assets, A and B. Asset A has a normally
distributed rate of return with mean, µA = 10 percent, and standard deviation,
σA = 20 percent. Asset B has a normally distributed rate of return with mean,
µA = 15 percent, and standard deviation, σB = 30 percent. We will invest half of
our available funds in Asset A and half in Asset B, and we are interested in seeing
how the distribution of the rate of return of our portfolio varies as a function of
the correlation coefficient, ρ, between the rates of return on Assets A and B. In
Two Correlated Assets.xls, cells A9 and A10 are assumptions, and cell A13 is a
forecast.

The assumptions in cells A9 and A10 of the file TwoCorrelatedAssets.xls are
defined as normal distributions as described in Chapter 4. However, to reflect the
limited liability of stock ownership, the rates of return on both assets are truncated

71
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FIGURE 5.1 Spreadsheet model in
file TwoCorrelatedAssets.xls, which models rate
of return on portfolio as the correlation
coefficient, ρ, varies from −1.00 to +1.00 in
steps of 0.25. Cell D5 is a decision variable,
cells A9 and A10 are assumptions, and cell A13 is
a forecast.

on the left at −100 percent. This is accomplished by entering this value in the
field directly above the Mean field as shown in Figure 5.2 for the rate of return
assumption for Asset B. With a mean of 15 percent and a standard deviation of
30 percent, the normal distribution will rarely produce any values below −100%
(which is more than 3.8 standard deviations below the mean), but truncating the
distribution ensures that on those rare occasions when a value less than −100%
is generated from a nontruncated normal distribution for Asset B, Crystal Ball will
discard it and generate another random value in its place. Asset A’s rate of return is
also bounded from below by −100%.

Note that the title bar of the dialog in Figure 5.2 for cell A10 indicates that it is
correlated with another assumption, in this case the assumption in cell A9. During
any simulation run, the correlation coefficient is the value in cell D5, which is what
we will vary with the Decision Table tool.

To make Cell D5 into a decision variable, first click on it. Then select
Define→Define Decision. . . from the top menu or click on the Define Decision
icon on the Crystal Ball toolbar. Fill in the fields as shown in Figure 5.3. This
tells Crystal Ball that you wish to vary the value in cell D5 from −1.00 to +1.00
in discrete steps of 0.25. Click OK and cell D5’s background will turn yellow to
indicate that a decision variable is defined in that cell. You are now ready to use the
Decision Table tool or OptQuest with the model.
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FIGURE 5.2 Define assumption dialog for cell A10 in
file TwoCorrelatedAssets.xls.

FIGURE 5.3 Define Decision Variable dialog window.

DECISION TABLE WITH ONE DECISION VARIABLE

Select Run→Tools→Decision Table. . . from the top menu. You will get a dialog
window for step 1 like that shown in Figure 5.4. For models with more than one
forecast defined, you would first highlight the forecast for which you wish to
analyze the sensitivity to the decision variable. As there is only one forecast in this
model, there is no choice to be made here, so click Next > to select the forecast
Portfolio ROR.
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FIGURE 5.4 Dialog window for step 1 of using Decision Table.

The dialog for step 2 is where you choose the decision variables to evaluate,
as shown in Figure 5.5. Again, because there is only one decision variable defined,
click >> to move the decision variable Correlation to the Chosen Decision Variables
field, then click Next>.

Step 3 is where you specify the Decision Table options. Take the default options
depicted in Figure 5.6, then click Start. Crystal Ball will begin running nine sets of
10,000 simulation trials, one set for each of the following values of the correlation
coefficient:

{−1.00, −0.75, −0.50, −0.25, 0.00, 0.25, 0.50, 0.75, 1.00}

After it has finished running 90,000 simulation trials, Crystal Ball will create
a separate workbook like that in Figure 5.7 holding nine forecasts and three
buttons:Trend Chart, Overlay Chart, and Forecast Charts.

Trend Chart

To see the trend chart, select the forecasts in cells B2:J2, then click Trend Chart
to get a graphical display similar that shown in Figure 5.8. A trend chart displays
the certainty bands for several forecasts on one plot. The chart in Figure 5.8 clearly



Using Decision Variables 75

FIGURE 5.5 Dialog window for step 2 of using Decision Table.

FIGURE 5.6 Dialog window for step 3 of using Decision Table.



76 FINANCIAL MODELING WITH CRYSTAL BALL AND EXCEL

FIGURE 5.7 Results of using Decision Table.

FIGURE 5.8 Trend chart displaying results of using Decision Table.

shows how the variability of the portfolio rate of return increases as the correlation
coefficient goes from −1.00 to +1.00. At the left end of the trend chart, the 90
percent certainty band extends from 4.3 percent to 20.7 percent for the forecast
Portfolio ROR (1), which is the forecast generated when the correlation coefficient is
−1.00. At the right end, the 90 percent certainty band extends from −28.6 percent
to 53.6 percent for the forecast Portfolio ROR (9), which is the forecast generated
when the correlation coefficient is +1.00. These correspond to the same certainty
intervals indicated in the forecast charts for Portfolio ROR (1) and Portfolio ROR (9)
displayed in Figure 5.9.

Note how the certainty bands diverge from left to right, but remain centered
on 12.5 percent. They correspond very well to the theoretical bounds calculated in
Two Correlated Assets.xls, and displayed in Figure 5.10.
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FIGURE 5.9 Frequency charts for Portfolio ROR (1) and (9) from
Decision Table results.

These charts conform well to theory, which holds that the rate of return on
the portfolio will be normally distributed with mean µP = wµA + (1 − w)σB, and
standard deviation

σP =
√

w2σ 2
A + (1 − w)2σ 2

B + 2w(1 − w)ρσAσB, (5.1)

where w is the weight (0 ≤ w ≤ 1) of Asset A in the portfolio. For this example,
w = 0.5.
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FIGURE 5.10 Theoretical 90 percent certainty
bounds for trend chart displaying results of using
Decision Table. Bounds are calculated as
µP + �−1(y)σP, where �−1(y) is the inverse CDF for
the standard normal distribution, y = 0.05 for the
lower bound, and y = 0.95 for the upper bound.

It is worth noting that our model differed slightly in at least two ways from
the theoretical model underlying Expression (5.1). First, Crystal Ball uses Spear-
man correlation, ρS, for sampling instead of the Pearson correlation, ρ, used in
Expression (5.1); however, for normally distributed rates of return this makes little
difference. Second, we truncated the rate of return assumptions on the left, which
has the effect of changing the standard deviations slightly, but this also made little
difference.

Overlay Chart

The forecast charts in Figure 5.9 look similar, but the scales of their horizontal axes
are much different. To make it easier to compare forecasts, use an overlay chart. Click
on cell B2, then hold down the Ctrl key and click on cell J2 to select the forecasts
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FIGURE 5.11 Overlay chart displaying results of using Decision
Table.

for Portfolio ROR (1) and Portfolio ROR (9). Then click the Overlay Chart button to
get a chart like that displayed in Figure 5.11, which clearly shows the difference in
dispersion between the forecasts for Portfolio ROR (1) and Portfolio ROR (9). You
can create an overlay chart for more than two forecasts at a time, but do so with
care as they become hard to read when too many forecasts are included.

DECISION TABLE WITH TWO DECISION VARIABLES

You can also use the Decision Table tool with two decision variables. The output is
similar to the output with one decision variable, except that Crystal Ball will produce
an array containing a forecast for every possible combination of the values specified
for each decision. This section contains an example of using Decision Table with a
model built as an illustration of how to estimate a value for managerial flexibility.

Model
For an example of a situation with two decision variables, suppose that a firm can
invest in a project having a three-year life and a terminal value that depends on the
cash flow in the final quarter of the third year. Suppose further that there are only
two sources of uncertainty: (1) the average quarterly growth rate of revenue, and (2)
variable cost as a percentage of revenue. We assume that average quarterly revenue
growth is random and follows a normal distribution with mean = 5 percent, and
standard deviation = 5 percent. Variable cost as a percentage of revenue is also
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FIGURE 5.12 Spreadsheet segment from Project.xls. Note that columns E through K are hidden.

normally distributed with a mean of 50 percent, and a standard deviation of 5
percent. The discount rate is assumed to be 12.5 percent. Figure 5.12 shows a
spreadsheet segment from Project.xls that is used to value this project with net
present value (NPV). For the purposes of this example, we will use the Mean of the
NPV forecast, ENPV, as the value of the project.

By looking at this project from different perspectives, we can estimate the value
of the project manager’s flexibility over time to affect the course of the project. To
estimate the value of this flexibility, we consider two scenarios to find:

ENPV 1 = The value of the project without managerial flexibility; and
ENPV 2 = The value of the project with managerial flexibility.

The value of the managerial flexibility is then determined as the difference between
ENPV 1 and ENPV 2.

With a standard NPV analysis, we assume that the project manager has no
flexibility to make decisions during the life of the project. That is, once the project
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is begun it is run to the end of three years with no expansion if successful, and no
abandonment if unsuccessful.

Open the file Project.xls and run the simulation model. When the simulation
stops, look at the Crystal Ball forecast window for NPV 1, which is also shown in
Figure 5.13. The mean net present value is $18.61, which is the value of the project
with no flexibility. Note that the output in Figure 5.13 also shows the probability is
only about 40 percent that the project will add value to the firm, because the value
in the certainty field at the bottom center of the forecast window is 42.92 percent.

Now suppose that we are faced with a similar situation, but this time we have
the option to abandon the project if unfavorable circumstances occur. For now,
let’s use the following decision rule for abandonment. Begin checking in the second
quarter of Year 2, and abandon the project if three consecutive quarters of negative
cash flow occur. This decision rule is built into rows 50 and 51 of Project.xls with
indicator variables, as shown in Figure 5.14. Cells G50:M50 check whether or not to
abandon each quarter, and cells G51:M51 ensure that once abandoned, the project
contributes no positive cash flows in future quarters.

The Crystal Ball output in Figure 5.15 shows that the option to abandon has
increased the project’s value. Because the mean NPV with abandonment possible is
$50.62, the value of the abandonment option is estimated to be $50.62 − $18.61
= $32.01. Note that the flexibility to abandon the project does not change the
inherent risk structure of the project itself, so in Figure 5.15 the probability that the
project adds value to the firm remains the same, that is, Pr(NPV > 0) ≈ 40 percent.

FIGURE 5.13 Crystal Ball forecast for NPV1 for the case of no flexibility
in the Project.xls model.
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FIGURE 5.14 Spreadsheet segment from Project.xls model showing the possibility
of abandonment. Note that columns E through K are hidden.

FIGURE 5.15 CB forecast window from Project.xls model showing the
possibility of abandonment.
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However, by allowing for abandonment, we limit the losses incurred by the firm,
just as an active and astute project manager would do in a real-world situation.
Because of the ability to limit losses in the left tail of the distribution, the manager’s
flexibility increases the ENPV of the project.

Now consider another option the manager has with this project, the option to
expand if favorable conditions occur. To value the expansion option, we use the
following decision rule. Begin checking in the second quarter of Year 2, and expand
if we see three consecutive quarters of cash flow greater than $15. The investment
in the expansion project will cost $200, and we assume that expansion will double
the quarterly revenue and expenses. This decision rule is built into rows 77 and 78
of the spreadsheet model in Project.xls shown in Figure 5.16.

FIGURE 5.16 Spreadsheet segment from Project.xls model showing the possibilities of abandonment
and expansion. Note that columns E through K are hidden.
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FIGURE 5.17 CB forecast window from Project.xls model showing
the possibility of expansion.

The Crystal Ball output in Figure 5.17 shows that the option to expand the
project has vastly increased its value. Because the mean NPV with both expansion
and abandonment possible is $290.03, the value of the expansion option is $290.03
− $50.62 = $239.41. Note that the flexibility to expand the project did change its
inherent risk structure slightly, in that the the probability that the project adds value
to the firm increased a bit, that is Pr(NPV > 0) ≈ 48 percent. If you extract the
data, you will see that on about 500 trials, the value of NPV 3 was positive while
NPV 2 was negative. In this situation we model the realistic behavior of an active
decision maker who will capitalize on fortuitous conditions that promote expansion.
By expanding when times are good, the decision maker increases the ENPV of the
project by adding gains to the right tail of the distribution of possible results.

Threshold Values

In the previous example we arbitrarily specified the decision rule for project aban-
donment as ‘‘abandon the project if three consecutive quarters of negative cash flow
occur.’’ Likewise, we arbitrarily specified the decision rule for project expansion as
‘‘expand if we see three consecutive quarters of cash flow greater than $15.’’ By
adding decision variables to the model we can use the Decision Table tool to help
determine if the arbitrary threshold dollar amounts of $0 for abandonment and
$15 for expansion are the optimal values to use. That is to say, it is possible that
some other threshold values, such as −$5 and $20 might yield higher option values
and if so we would like to find the threshold values that yield the highest option
values. Note that we could also use decision variables to determine whether using
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FIGURE 5.18 Decision variables for the threshold value at which to
abandon and expand in the Project.xls model.

two or four (or some other number) of consecutive quarters is optimal; however, for
illustrative purposes here we will stick to threshold dollar amounts of cash flow.

To see the decision variable for the threshold value of cash flow for aban-
doning the project, click on cell B4 in Project.xls. Then click on Define→Define
Decision. . . on the top menu in Excel. This will bring up the dialog window shown
at the top of Figure 5.18. Cell B4 is named ‘‘Abandon Point,’’ and Crystal Ball will
consider four different values, {0, −3, −6, −9}. Note that we specified discrete steps
of $3, but by clicking the Continuous button in the Variable Type section of the
dialog window, we could have had Crystal Ball investigate the potentially infinite
number of values between virtually any specified lower and upper bounds. Using a
discrete variable type limits the number of values that Crystal Ball checks and thus
speeds up the analysis.
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To see the decision variable for threshold value of cash flow for expanding the
project, click on cell B5 in Project.xls. Then click on Define→Define Decision. . . on
the top menu in Excel. This will bring up the dialog window shown at the bottom
of Figure 5.18. We have named this decision variable ‘‘Expansion Point’’ and have
told Crystal Ball to consider seven different values, {0, 5, 10, . . . , 30}. Note that we
specified discrete steps of $5 here to speed up the analysis and simplify the results
displayed in the next section.

Two-Way Decision Table

With the decision variables for cells B4 and B5 as defined in the previous section, we
can use Crystal Ball’s decision table tool to find the optimal combination of values
for Abandon Point and Expansion Point.

1. In the top menu, click on Run→Tools→Decision Table to bring up Step 1 of
the Decision Table tool (see Figure 5.19). Select the target forecast NPV 3 as
shown in Figure 5.19). Click the Next> button to continue.

FIGURE 5.19 Step 1 in using the Decision Table tool with the Project.xls model.
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FIGURE 5.20 Step 2 in using the Decision Table tool with the Project.xls model.

2. Use the >> button to move the decision variables Abandon Point and Expansion
Point into the Chosen Decision Variables box on the right side of the dialog box
as shown in Figure 5.20. Click the Next> button to continue.

3. Take the default values for the fields in the step 3 dialog box as shown in
Figure 5.21. Click the Start button to tell Crystal Ball to use the decision table
tool to evaluate all possible combinations of the specified values of Abandon
Point and Expansion Point.

You have just instructed Crystal Ball to run 10,000 trials for each of 4 × 7 = 28
different combinations of decision variable values. The amount of time it takes
Crystal Ball to run these 280,000 iterations depends on the speed of your computer.

Interpreting the Results

Figure 5.22 shows the results of using the decision table tool. Cell C3 contains
the maximum expected NPV of $299.78, which results from using the following
decision rules: (1) Begin checking in the second quarter of year, and abandon the
project if three consecutive quarters of cash flow below −$6 occur; and (2) expand if
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FIGURE 5.21 Step 3 in using the Decision Table tool with the Project.xls model.

FIGURE 5.22 Results from using the Decision Table tool with the
Project.xls model.
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three consecutive quarters of cash flow greater than $5 occur. These new threshold
values of −6 and 5 are shown in the labels occupying cells C1 and A3, respectively,
in Figure 5.22. Note that the maximum value of $299.78 identified in the Decision
Table tool output is $9.75 greater than the $290.03 identified in Figure 5.17. Keep
in mind, though, that these figures are just estimates based on 10,000 runs of the
simulation. More runs would result in higher precision of the estimates.

At its heart, Monte Carlo simulation is just a computer-based sampling system.
Thus, specifying more runs of the simulation will yield more precise results just as
including more items in a random sample yields more precise estimates in a statistical
study designed to make inferences about a population. Crystal Ball allows you to
specify the level of precision that you desire. See Chapter 6 for information on how
to specify the precision level.

In this example, we varied the Abandon Point in steps of $3, and the expansion
Point in steps of $5. We might be able to identify even higher levels of expected NPV
by using smaller steps.

The Decision Table tool works well to find the optimal solution for problems
involving one or two decision variables. It also serves to introduce the notion of
simulation optimization, which is the process of finding the best values of decision
variables that we just completed for abandon point and expansion point. When more
than two decision variables are involved, as is typical for more realistic problems,
the add-in OptQuest is a more powerful tool for finding an optimal solution. This
is the topic of the next section.

USING OPTQUEST

We saw in the last section how a decision table could be set up to find the value
of a designated output for selected combinations of two decision variable values.
Once that was accomplished, we found the best solution by looking at the values
in the table to locate the combination that gave the maximum value of the output.
Decision tables work very well for one or two decision variables. However, if there
are more than two decision variables, decision tables are cumbersome. This section
describes how to use the Crystal Ball tool OptQuest to help find the best decisions
to make in situations involving more than two decisions.

Terminology

In order to understand better how OptQuest works, some background knowledge of
the terminology is required. This subsection gives definitions for some of the terms
that will be used throughout the rest of this section.

Constraint. A constraint is a relationship among decision variables that
restricts the values of the decision variables. When you define a decision
variable, you constrain it individually by specifying the bounds. However,
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TABLE 5.1 Forecast statistics available for optimizing or using in a
requirement with OptQuest.

Mean Percentile Mean standard error
Median Skewness Certainty
Mode Kurtosis Final value
Standard deviation Coefficient of variability
Variance Range

with an OptQuest constraint, you can restrict the values of linear combina-
tions of decision variables. For example, an OptQuest constraint might be
used to ensure that the sum of weights in a portfolio of assets is equal to
1.0.

Objective. An objective gives a mathematical representation of the criterion
by which it will be determined what is best or optimal. For the Project.xls
model, the objective is the maximization of mean net present value (ENPV)
because NPV is a direct measure of the value added to the firm by actions
undertaken by a decision maker. However, other objectives could also be
chosen, such as minimizing the cost or the riskiness of a decision.

Forecast statistic. A forecast statistic is a summary value of a forecast distribu-
tion, such as the mean, standard deviation, or variance. The optimization
is controlled by maximizing, minimizing, or restricting a selected forecast
statistic. For example, in the Project.xls model, we chose to maximize the
mean NPV because doing so will, on average, give the best results. Thus,
maximizing the mean of a forecast is a good strategy for a firm that makes
many decisions on a periodic basis. An individual or a firm that is more
risk-averse, however, might choose to minimize the standard deviation,
or maximize the 5th percentile of the forecast distribution, for example.
Table 5.1 lists the forecast statistics available for optimizing or using in a
requirement.

Requirement. A requirement is a restriction on a forecast statistic that you
can set while trying to optimize on some other statistic. For example,
you might be interested in maximizing the mean return on a retirement
portfolio while at the same time requiring that the risk as measured by
the standard deviation does not exceed some specified value. You can use
requirements to set upper and lower limits for any statistic of a forecast
distribution.

Example

Open Project.xls, then go to the top menu and select Run→OptQuest. In OptQuest,
select File→New. This will start a wizard that will lead you through the dialog
windows to set up the tool. The Decision Variable Selection window appears first,
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FIGURE 5.23 Decision Variable Selection window for the Project.xls model.

FIGURE 5.24 Constraints window for the
Project.xls model.

listing every decision variable defined in the Crystal Ball model. Your window should
look like the one shown in Figure 5.23.

The window in Figure 5.23 lets you select which defined decision variables to
optimize. The columns and buttons are mostly self-explanatory, although it might
not be immediately apparent that Suggested Value is simply the value that is in the
decision variable cell when OptQuest is started. To follow this example, you need
only to use the default values, so click OK to continue.

The next window that appears is the Constraints window, which is shown in
Figure 5.24.

In OptQuest, constraints limit the possible solutions to a model in terms of
relationships among the decision variables. In Version 2.3 of OptQuest, you can use
the Constraints window to specify only linear constraints. In the Project.xls model,
we have no constraints on the decision variables (except for the bounds, which we
specify when defining the decision variables), so click on OK to continue.

After you exit the Constraints window, the Forecast Selection window appears
next, listing all the forecasts defined in the model as shown in Figure 5.25. In the
forecast row for NPV 3, click in the Select column. From the drop-down menu,
select Maximize Objective, which by default will maximize the mean of the NPV 3
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FIGURE 5.25 Forecast Selection window for the Project.xls model.

FIGURE 5.26 Options window for the Project.xls model.

forecast. Note that you can choose any of the forecast statistics in Table 5.1 to
optimize. Click on OK to continue.

The Options window lets you set options for controlling the optimization
process, as shown in Figure 5.26. See the OptQuest User Manual, pages 76--81, for
a discussion of the choices available in this window. For now, we’ll accept all the
defaults, so click on OK to continue. Then click on Yes to indicate that you want to
run the optimization now.

While the optimization is running, a Status and Solutions window and Perfor-
mance Graph should appear, as shown in Figures 5.27 and 5.28, respectively.

When running an optimization, you can stop, pause, continue, or restart at any
time. You cannot work in Crystal Ball or Excel or make changes in OptQuest when
running an optimization, but you can work in other programs. Do not close Excel,
Crystal Ball, or OptQuest while running an optimization.

After solving an optimization problem with OptQuest, you can

■ Run a solution analysis to determine the robustness of the results;
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FIGURE 5.27 Status and Solutions window for the Project.xls
model.

FIGURE 5.28 Performance Graph for the Project.xls model.

■ Run a longer Crystal Ball simulation using the optimal values of the decision
variables to assess with more precision the risks of the recommended solution;
or

■ Use Crystal Ball’s analysis features to evaluate the optimal solution further.

For now, notice that the best solution identified in Figure 5.27 is the same as
that identified in Figure 5.22 using Decision Table, namely an Abandon Point of
−6 and an Expansion Point of 5. For both Figures 5.27 and 5.22, we used four
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different values for Abandon Point and seven different values for Expansion Point.
If we used more values with Decision Table, the Decision Table results would take
up more cells than shown in Figure 5.22, and would also have taken longer to
generate. However, with OptQuest we could have easily specified an essentially
infinite number of values by specifying ‘‘continuous’’ with the pulldown menu in
the Type column of Figure 5.23. This would increase the time taken by OptQuest
to search for an optimal solution, but it would result in values of Abandon Point
and Expansion Point that are closer to the overall optimal values. This is one reason
why OptQuest searches for optimality are usually preferred over Decision Table
searches.



CHAPTER 6
Selecting Run Preferences

N ow that we have covered the basics of setting up a Crystal Ball model and using
its forecasts to help you make decisions, we will take a closer look at the options

available to you through the Run Preferences menu to control the execution of your
simulation models.

TRIALS

Figure 6.1 shows the Trials tab of the Run Preferences dialog. A Crystal Ball trial is
the process of generating random variates from the stochastic assumptions you have
defined for your model, evaluating the formulas that depend on these values, then
calculating and storing the forecast values.

When you click the Run button, Crystal Ball begins executing the steps depicted
in Figure 6.2. The actions taken by Crystal Ball at each step are described as follows:

Start is where Crystal Ball prepares itself to run a simulation by looking for the
assumption and forecast cells in your spreadsheet, and getting ready to store
forecast values in your computer’s memory.

Set Values is where each trial begins by Crystal Ball generating a random value for
each stochastic assumption and placing it in the corresponding assumption
cell.

Recalculate is where Crystal Ball instructs Excel to use the values that were just
placed in the assumption cells to update each cell in the spreadsheet that
depends on the assumptions.

Get Results is where Crystal Ball takes the updated value from each of the forecast
cells and stores it in memory. If you have enabled sensitivity analysis, Crystal
Ball also stores the current value of each assumption cell during this step
for possible analysis later with sensitivity charts.

Stop marks the completion of each simulation trial. If none of the stopping criteria
described below have been satisfied, Crystal Ball returns to the Set Values
step as indicated in Figure 6.2.

End is where Crystal Ball returns control to Excel after one of the stopping criteria is
met, or after you have clicked on the Stop button in the Crystal Ball toolbar.

95
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FIGURE 6.1 Run Preferences Trials tab.

Crystal Ball executes the simulation cycle automatically, but it also gives you
some control over selected aspects of the execution. This section describes those
aspects.

Number of Trials to Run

This is the maximum number of trials you want Crystal Ball to run before it stops the
simulation. There are other stopping criteria, so sometimes the simulation will stop
before the maximum number of trials is reached. In general, the more trials you run,
the better (more precise) will be your solution in a statistical sense. A rule of thumb
is to use no fewer than 2,000 trials (see Figure 2.7). With Crystal Ball’s Extreme
Speed feature, 10,000 trials will execute quickly for moderately complex models, so
that is the number of trials specified in most of the examples shown in this book.

Stop on Calculation Errors

When this box is checked, Crystal Ball will stop the simulation when a numerical
error occurs in an Excel calculation. Numerical errors are often caused by dividing
by some zero somewhere. For example, for arrays of values that have different
algebraic signs, using Excel’s =IRR(values,guess) formula in a forecast cell can
sometimes cause a numerical error.
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Start

Set Values

Recalculate

Get Results

Stop

End

FIGURE 6.2 Simulation cycle.

It is good practice always to have this box checked, as numerical errors are
usually the result of errors in model logic and this feature of Crystal Ball will alert
you if any such errors are present. However, if you are using =IRR(values,guess)
in your model and have difficulty getting Crystal Ball to run to completion, try
unchecking this box.

Stop When Precision Control Limits Are Reached

Checking this box enables Crystal Ball’s statistical precision-checking feature. The
precision of an estimate is determined by the half-width of a (1 − α)100% confidence
interval, which is computed by Crystal Ball for the mean as zα/2s/

√
n, where

zα/2 is the (1 − α/2)100 percentile of the standard normal distribution, s is the
Standard Deviation, and n is the number of trials from which the standard error is
computed. As discussed in Chapter 2, the value of s/

√
n is reported in the Statistics

View of the Forecast window as Mean Standard Error. Smaller values of s yield
smaller half-widths, which yields more precise estimates. Each of the three terms in
the half-width calculation (zα/2, s, and n) can be used to increase the precision of the
estimate of the mean.
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The value of zα/2 is affected by the number you enter in the Confidence level
field in Figure 6.1, which is your specification of 1 − α. For example, when you
specify a 95 percent confidence level, then zα/2 = z.975 = 1.96, which means that the
precision is measured as roughly two standard errors of the mean. While there may
sometimes be good reason to change the value of 1 − α in particular situations,
leaving the confidence level at 95% will suffice for most financial models.

Crystal Ball calculates the standard deviation of the forecast values, s, using
Expression 2.1 as the simulation progresses. While s cannot be affected by options
specified in the dialog shown in Figure 6.1, it is possible to increase precision by
reducing s (or equivalently, the variance, s2) through so-called variance reduction
techniques, which require structural changes to the model and are described in
Appendix C.

The precision of the estimate increases at a rate inversely proportional to the
square root of the number of trials. During the simulation, Crystal Ball recalculates
the half-width periodically, then stops the simulation when either the maximum
number of trials or specified precision is reached, whichever comes first.

As an example of how to use the precision control feature, open the file
Accumulate.xls, and click on the Forecast cell D4. Then select Define→Define
Forecast . . . to get the Define Forecast dialog shown in Figure 6.3. Select the
Precision tab. Note that you might have to click on the More icon—two arrowheads
pointing down (

�

) in the upper right portion of the dialog to see the tabs. Check
the two check boxes and punch the radio button indicated in Figure 6.3, and specify
50000 as the absolute units of precision as shown. Click OK.

In Run Preferences, change the Number of trials to run to one million (enter
1000000 with no commas), and make sure that Stop when precision control limits
are reached is checked. Then click OK. Press the Run button on the Crystal Ball
toolbar. Your simulation model should stop running well before 1 million trials
have run, and you should see a Statistics View for Year 30 Wealth that looks like
that shown in Figure 6.4.

It is also possible to specify precision for the median, the standard deviation, or
a selected percentile. This is done by following steps similar to those above for speci-
fying the precision of the mean. See the Crystal Ball User Manual for specific details.

SAMPLING

Figure 6.5 shows the Sampling tab of the Run Preferences dialog, which has options
related to the algorithms for generating the random numbers Crystal Ball uses to
drive the simulation. This section gives a high-level overview of these options. For a
more technical discussion, see Appendix B.

Random Number Generation

Random numbers are values between 0 and 1 that Crystal Ball generates to drive
all the randomness in your models. The algorithm that Crystal Ball uses to generate
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FIGURE 6.3 Define Forecast dialog showing the Precision tab.

FIGURE 6.4 Statistics View for Year 30 Wealth forecast showing
that a precision of $46,587 was reached in 40,000 trials.
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FIGURE 6.5 Run Preferences Sampling tab.

these random numbers has the capability to produce over two billion different
values in such a way they appear to have the Uniform(0,1) distribution and be in a
completely ‘‘random’’ order, that is, the numbers appear to be serially independent.
However, this random order is predetermined and is the same every time Crystal
Ball runs. See Appendix B for more details about the algorithm used by Crystal
Ball’s random number generator.

Think of these random numbers as being placed in the predetermined random
order clockwise on the perimeter of a circle with a spinner arrow in the middle.
Once the spinner arrow is at its starting point, Crystal Ball will select each random
number it needs sequentially in a clockwise direction from the circle beginning with
the number at the spinner’s starting point. With this image in mind, you can think of
the Random number generation options on the Sampling tab as giving you control
over where to set the spinner to designate the starting point.

By checking the Use same sequence of random numbers check box and spec-
ifying an Initial seed value as indicated in Figure 6.5, you are telling Crystal Ball to
set the starting point for its random numbers at the same place each time you run a
simulation. The Initial seed value must be an integer between 1 and 2147483647.
The Use same sequence of random numbers option helps to compare results for
different models having the same stochastic assumptions. By using the same sequence
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of random numbers in two models, any differences in performance are due to
differences in the models rather than sampling error.

If you do not specify an initial seed value, Crystal Ball will determine a seed
from the number of milliseconds that have elapsed since Windows began running
on your computer. This of course will be different each time you run the simulation,
so you can expect Crystal Ball to produce different forecast values on each run.

Sampling Method

Appendix B also provides some technical details and references on the differences
between Monte Carlo sampling (MCS) and Latin Hypercube sampling (LHS). As
the statistical theory behind MCS is well known, it should be used for applications
where your intended audience is most critical, such as in academic research. LHS is
a form of stratified sampling where all portions of the tails of a distribution are sure
to be sampled. The statistical properties of LHS samples are the subject of current
academic research, and no widely accepted methods of assessing precision with LHS
are available yet. Nevertheless, LHS is probably the best choice for most practical
applications. LHS uses slightly more computer memory than MCS, but this should
not pose a problem for most users.

SPEED

Figure 6.6 shows the dialog containing options that let you control how quickly
your simulation model executes. Once it is built and debugged, you will ordinarily
want it to run as fast as possible. However, there are sometimes reasons for not
doing so, such as when you are demonstrating the model to a potential user of its
results.

Run Mode

I suggest that you use Extreme Speed (ES) mode whenever you can, but you must
realize that it imposes a few constraints on how you build your model because it uses
vectorization to speed up the calculations. Essentially, this means that ES mode will
perform hundreds of simulation trials at a time in RAM (random access memory),
while normal speed performs them one at a time. Most of Excel’s 320 functions
are supported, but a few are not. The most commonly used unsupported function
is the string function. One common way for strings to be used is when an Excel IF
command puts ‘‘Yes’’ or ‘‘No’’ in a cell that is referenced by another formula. ES
mode will not work with the strings ‘‘Yes’’ or ‘‘No,’’ but works fine if you replace
these with 1 and 0, or the Excel Boolean values TRUE and FALSE. Consult the
Crystal Ball User Manual Appendix C for a complete list of unsupported functions
and the Crystal Ball Web site for updates on this feature.
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FIGURE 6.6 Run Preferences Speed tab.

Here are some tips for getting the most out of Extreme Speed:

■ Make sure that your computer has lots of RAM.
■ Build your models so that the UsedRange (upper left rectangle of non-empty

cells) is minimized.
■ Use Latin Hypercube sampling.
■ Avoid references to other worksheets that are not required for your model.
■ Avoid using large ranges in function arguments (for example, in the LOOKUP

function).

Normal speed should be checked when you use a function not supported by ES
mode. Demo speed is useful for demonstrating to others how your model works and
animating Excel graphs.

Chart Windows

These two radio buttons let you specify the rate at which Crystal Ball redraws the
chart windows. Because this takes time away from doing the calculations during
a simulation, suppress the chart windows to get the simulation completed most
quickly. This may be most useful when using OptQuest.
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OPTIONS

Figure 6.7 shows the Run options, which are mostly self-explanatory. When
you are building and refining your model, you should always enable
Store assumption values for sensitivity analysis, and do sensitivity analyses to help
refinement. Once you are satisfied with your model, you can disable storage to help
Crystal Ball run the model faster.

It turns out that having highly correlated assumptions can sometimes interfere
with sensitivity analysis. For example, assume that you have a model for which
the Forecast cell is highly sensitive to Assumption A, but not impacted at all by
Assumption B. However, if Assumptions A and B are defined with a high (positive
or negative) correlation, the sensitivity analysis could indicate that the forecast is
sensitive to both Assumptions A and B just because B tends to follow A. Therefore,
when using sensitivity analysis with correlated assumptions, you will want to disable
the correlations when you are doing sensitivity analysis. Just remember to turn it
back on when you run the model for decision making.

The Run user-defined macros option is useful for power users of Crystal Ball
and Excel, but for most financial models Excel has built in all the functions that
you will need. However, if you are facile with Visual Basic for Applications (VBA)

FIGURE 6.7 Run Preferences Options tab.
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and wish to do things Excel doesn’t already do, or you wish to do extra processing
during each trial of the simulation, see the Crystal Ball User Manual for how to use
macros with a Crystal Ball simulation model.

Enabling Warn if insufficient memory will cause Crystal Ball to issue a warning
dialog if you don’t have enough memory in your computer to run the simulation.
The dialog lists several things you can do to help, but the best course of action is to
put more RAM in your computer if you see this warning often.

STATISTICS

Figure 6.8 shows the options to change how percentiles are calculated and formatted.
Punch the radio buttons to match your taste and that of the decision maker who
will use your model’s output. The Calculate capability metrics check box is used
primarily for Six Sigma applications, so is not discussed further here.

FIGURE 6.8 Run Preferences Statistics tab.



CHAPTER 7
Net Present Value and Internal Rate

of Return

N ow that we have completed your introduction to Crystal Ball, we will begin
looking at several different types of situations for which Crystal Ball models are

useful. We start with net present value (NPV) models, because using Monte Carlo
simulation to develop distributions of NPV is a source of controversy among some
academics even though it is done routinely by practitioners. In this chapter, we will
consider both sides of the controversy and see some models where the distribution of
NPV can help the decision maker gain insight into the problem at hand. We will also
consider the pros and cons of using internal rate of return (IRR) as a Crystal Ball
forecast. It is assumed that you are already familiar with these concepts. For more
background information on NPV and IRR, see any introductory finance textbook
such as Melicher and Norton (2006).

DETERMINISTIC NPV AND IRR

Suppose that you have the opportunity to purchase an annuity that costs you $100
at Year 0, and is certain to return $30 to you at the end of each Year 1 through
5. These cash flows are depicted in the Excel chart on the spreadsheet segment in
Figure 7.1. Denote the cash flow at the end of Year t as Ct, and the relevant annual
rate of interest as r. Then the NPV of the annuity is defined as

NPV =
5∑

t=1

Ct

(1 + r)t
+ C0. (7.1)

For the cash flows in Figure 7.1, if r = 10 percent then NPV = $13.72 as shown
in cell B11. Therefore, the annuity is a good investment for any individual with a
required minimum rate of return of 10 percent because the investment’s NPV of
$13.72 is greater than zero at that rate.

Be aware that the definition of NPV in Expression 7.1 is slightly different from
that used by the Excel NPV function. To find the NPV of the annuity in Figure 7.1,

105
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FIGURE 7.1 Spreadsheet segment to model annuity with deterministic
cash flows of −$100 at the end of Year 0, and $30 at the end of Years 1
through 5.

we use the Excel formula

=NPV(0.1,B5:B9)+B4, (7.2)

which is entered in cell B11 of NPV.xls. Most finance textbooks refer to the
quantity calculated in this example by Excel’s NPV function as the present value
at end of Year 0 of the cash flows obtained at the ends at Years 1 through 5.
To get the net present value, we also consider the investment (negative cash flow)
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FIGURE 7.2 Spreadsheet segment to
model stochastic cash flows at the end
of Years 1 through 5. Model 1 cash
flows in Years 1 through 5 are IID
normal(30,3). Model 2 cash flows
follow an additive random walk with
normal(0,3) increments.

at Year 0, denoted by C0 in Expression 7.1. This can be confusing, but the NPV
function has been defined this way for so many versions of Excel that Microsoft is
understandably loath to change it at this point because so many of their existing
customers are accustomed to the nontextbook definition and use it in many of their
existing models.

As an alternative to NPV, we can also help decide whether to purchase the annu-
ity by calculating its IRR. The IRR is defined to be the value of r in Expression 7.1
that makes NPV = 0. Because there is no convenient closed-form expression for
calculating IRR, we use Excel’s IRR function to find it for us. Notice that there is con-
sistency between the financial definition of IRR and Excel’s IRR function. Cell B12
in Figure 7.1 shows that the IRR for the annuity is 15.24 percent. You can check
this by replacing 0.1 with B12 in Formula 7.2 for cell B11 and seeing that NPV=0.

SIMULATING NPV AND IRR

Now let’s assume that we can purchase an investment product for $100 that has
stochastic cash flows in Years 1–5. We will use two different stochastic processes
for the risky cash flows, and compare the results to the annuity described in the
previous section.

Model 1. The cash flows at the end of Years 1–5 are independent and iden-
tically distributed (IID) over time. Specifically, each cash flow is calculated
as Ct = 30 + 3Zt for t = 1, 2, 3, 4, and 5, where each Zt is drawn from a
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normal(0,1) distribution independently of the Zts for the other years. The
Model 1 cash flows are in cells C5:C9 of file NPVModels.xls shown in
Figure 7.2.

Model 2. The cash flows at the end of Years 1–5 are linked over time
in an additive random walk model. Year 1 cash flow is computed as
C1 = 30 + 3Z1, so is equal to Model 1’s Year 1 cash flow. Years 2–5 cash
flows are computed as Ct = Ct−1 + 3Zt where the Zts for t = 2, 3, 4, and 5
are the same normal(0,1) random variates used to generate Model 1’s cash
flows. The Model 2 cash flows are in cells D5:D9 of file NPVModels.xls
shown in Figure 7.2.

To compare the effect of the IID model to that of the additive random walk
model, look at the differences between distributions of NPVs and IRRs in Figure 7.3.
Overlay Chart 1 in Figure 7.3 compares the distributions of NPVs for the two models
of cash flow. Each distribution has the same true expected value, which is $13.72
as it is for the annuity shown in Figure 7.1. However, a large difference in the
variability of the two distributions is evident in the overlay chart. As you can see
in Figure 7.4, the standard deviation of the distribution of Model 1 NPV is $5.14,
while in Figure 7.5 the standard deviation of the distribution of Model 2 NPV is
$16.11. This difference in variability is explained by the difference in the models
used to calculate the cash flows. Because the cash flows are linked to each other in
the random walk model (Model 2), their variability increases from year to year. For
example, in Model 1 the cash flow for Year 5 is calculated as C5 = 30 + 3Z5, so has
a true variance of 32 = 9 and standard deviation of 3. In Model 2, the cash flow for
Year 5 is linked to all previous years’ cash flows:

C5 = C4 + 3Z5

= C3 + 3Z4 + 3Z5

= C2 + 3Z3 + 3Z4 + 3Z5

= C1 + 3Z2 + 3Z3 + 3Z4 + 3Z5

= 30 + 3Z1 + 3Z2 + 3Z3 + 3Z4 + 3Z5,

so has a true variance of 5(32) = 45 and standard deviation 6.708. The increasing
dispersion of cash flow distributions over time in Model 2 reflects the decision
maker’s increased uncertainty about the cash flows the farther into the future he or
she looks. This increased uncertainty in cash flows causes the standard deviation
for Model 2 NPV to be larger than the standard deviation for Model 1 NPV in
Figure 7.2. Overlay Chart 2 in Figure 7.3 shows similar differences in dispersion for
the distributions of IRR.

Using simulation to find a distribution of net present value is heresy to some
finance professors, yet many analysts do this routinely without knowing that it is con-
troversial. When the concept of using distributions of NPV to compare investments
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FIGURE 7.3 Overlay charts to compare distributions of NPV (Overlay Chart 1) and IRR (Overlay
Chart 2) for Models 1 and 2 in Figure 7.2. In both charts the distribution for Model 1 cash flows has
much less dispersion than the distribution for Model 2 cash flows.
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was first promoted some 40 years ago by Hertz (1968), computers were not widely
available to managers as they are now. At that time, the only practical method of
calculating present value available to financial analysts was to estimate the expected
value (mean) of potential cash flows for each future period and discount them as
we did for each deterministic Ct in Expression 7.1. Doing so ignores the variation in
potential future cash flows, and could lead the uninitiated to conclude that there is no
difference between the annuity and the investment with stochastic cash flows. How-
ever, there is clearly a difference in the nature of these investments, and using simu-
lation to help illustrate the differences can be eye-opening for many decision makers.

The controversy over whether to use simulation to calculate a distribution of
NPV stems from the definition of NPV long ago as the sum of discounted expected
cash flows. Under this definition, the NPV of any investment is a single number and
some adherents of this definition bristle at talk of a distribution of NPV. Proponents
of simulation, however, advocate finding the distribution of the sum of discounted
potential cash flows from an investment as we did in Figures 7.4 and 7.5, then using
the distribution for analyzing the investment’s riskiness. When speaking to those who
bristle, you may find it helpful to refer to a distribution such as those in Figure 7.4
or 7.5 as a distribution of potential NPV rather than a distribution of NPV.

Notice that in this case the means of the distributions of potential net present
value are the same (within sampling error) as the NPV calculated as the sum of
discounted expected cash flows, $13.72. This will not hold true for all models, and
in the next section we will see a model for which the sum of the discounted expected
cash flows will not be equal to the expected value of the distribution of the sum of
potential cash flows, even after accounting for sampling error.

FIGURE 7.4 Split view of forecast chart and statistics window for Model 1 NPV in Figure 7.2.
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FIGURE 7.5 Split view of forecast chart and statistics window for Model 2 NPV in Figure 7.2.

CAPITAL BUDGETING

For an illustration of using simulation for capital budgeting decisions, consider an
example from Chapter 10 of the excellent and popular finance textbook by Brealey,
Meyers, and Allen (2006). I have tried to make the description below and the Excel
models self-complete, but for a fuller discussion of this project see BMA 2006.

Figure 7.6 shows a spreadsheet model in ScooterNPV.xls for the Otobai Com-
pany, who are considering the introduction of an electrically powered motor scooter
for city use. The inputs to be varied and their base-case values are in cells A4:B8.
The five variable inputs are: market size, market share, unit price (yen), unit variable
cost (yen), and fixed cost (billions yen). The model represented in cells A14:C24
can be stated in the following expressions for Investment in Year 0 and the other
variables in Years 1–10:

Investment = 15 billion yen

Revenue = Market size × Market share × Unit price

Variable cost = Market size × Market share × Unit variable cost

Depreciation = Investment ÷ 10

Pretax profit = Revenue − Variable cost − Fixed cost − Depreciation

Tax = 0.5 × Pretax profit

Net profit = Pretax profit − Tax

Net cash flow = Net profit + Depreciation
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FIGURE 7.6 ScooterNPV.xls spreadsheet model.

In the next section, we use this model to demonstrate the use of Crystal Ball’s
Tornado Chart tool for a deterministic sensitivity analysis of the project’s NPV
to the model inputs. As is done in BMA 2006, the Tornado Chart tool considers
changes in each of the five inputs in turn while the other four are at their base-case
values, and keeps track of the corresponding changes in NPV. Note that for each
of the five inputs we have defined a Triangular Assumption with parameters shown
in cells C4:E8. This was done to facilitate use of the Tornado Chart tool, not to
obtain a realistic simulation model for the investment. See Figure 7.14 for a realistic
simulation model that was created for risk analysis of this project.

Tornado Chart Tool
To use the Tornado Chart tool, select Run→Tools→Tornado Chart. . . from the top
menu. You will see a dialog window like that shown in Figure 7.7. Because NPV
is the only Crystal Ball forecast defined in the spreadsheet, click Next > to indicate
that you wish to analyze the sensitivity of NPV to the inputs.

Figure 7.8 is the dialog window for Step 2. Click Add Assumptions to cause the
inputs to appear in the list as shown in Figure 7.8. Note that we defined the inputs
as Crystal Ball assumptions only to make this step easier. After the inputs appear in
the list, click Next >.
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FIGURE 7.7 Step 1 in using the tornado chart tool.

FIGURE 7.8 Step 2 in using the tornado chart tool.
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The dialog for Step 3 of using the Tornado Chart tool is shown in Figure 7.9. In
this window you can change some options that are self-explanatory. Note that if you
take the default values as shown in Figure 7.9, the tool will consider five different
levels for each of the five inputs. The levels are determined by the percentiles of the
Crystal Ball assumptions that were defined in cells B4:B8. Click Start to get the
results.

A tornado chart like that shown in Figure 7.10 will appear in a new Excel
workbook. This chart lists the inputs from top to bottom in decreasing order of
the sensitivity of NPV to each input. Thus, Figure 7.10 indicates that NPV is most
sensitive to unit variable cost, and least sensitive to market size. The size of any
bar corresponds to the magnitude of change in NPV. The color corresponds to the
direction of the change in NPV caused by an increase in the input. Because the
biggest bars are at the top and the smallest bars are at the bottom, the result is a
figure that resembles a tornado. The tornado chart is useful for initial investigation
of sensitivities to suggest the order in which we should be concerned with the
inputs.

The spider chart in Figure 7.11 depicts the same information as the tornado
chart. In this figure, it is the slope of any line that indicates the sensitivity of NPV to

FIGURE 7.9 Step 3 in using the tornado chart tool.
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FIGURE 7.10 Tornado chart. Darker bars indicate a positive change in the corresponding input.

changes in the corresponding input. For example, Figure 7.11 indicates that NPV is
most sensitive to Unit variable cost because the slope of that line is greatest. As the
slope of the line is negative, we know that there is an inverse relationship between
unit variable cost and NPV. The inputs appear in the same order in the spider chart
as they do in the tornado chart.

The Tornado Chart tool is useful for a preliminary, deterministic sensitivity
analysis of any spreadsheet cell to its precedents. Although the tool did not require
us to do so, it made our job easier here to define NPV as a Crystal Ball forecast and
the inputs as Crystal Ball assumptions. When we do so, the output from the Tornado
Chart tool will be labelled with the names that we specified when we defined the
forecast and assumptions.

A tornado chart resembles the chart provided by Crystal Ball’s Sensitivity
Analysis feature, but it differs in how it obtains its results. Whereas the Tornado
Chart tool obtains results by varying the inputs one at a time deterministically, the
Sensitivity Analysis feature of Crystal Ball obtains its results through a statistical
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FIGURE 7.11 Spider chart.

analysis of the relationships between the randomly generated inputs and outputs
calculated during a set of simulation trials.

Risk Analysis
In this section, we consider a simulation model of Otobai’s electric scooter project
that follows the suggestions in Chapter 10 of Brealey, Meyers, and Allen (2006).
Instead of assuming that the inputs are constant for Years 1–10 as we did above,
we will allow them to vary by year. Furthermore, we will link them over time in a
multiplicative random walk, and correlate the inputs for each year.

Figure 7.12 shows the five stochastic inputs and their base-case values in
cells A4:B8. However, we will introduce randomness through ‘‘forecast errors’’ for
each input denoted by ei,t for Inputs i = 1, 2, 3, 4, 5 and Years t = 1, 2, . . . , 10. The
indexing is as follows:

e1,t = Market size forecast error at year t

e2,t = Market share forecast error at year t
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FIGURE 7.12 Part 1 of ScooterSimulation.xls.

e3,t = Unit price forecast error at year t

e4,t = Unit variable cost forecast error at year t

e5,t = Fixed cost forecast error at year t.

The simulation uses Crystal Ball’s Correlation tool to generate the forecast errors
for each year as correlated normal random variates with mean zero and stan-
dard deviations shown in cells E4:E8 in ScooterSimulation.xls. Figure 7.13 shows
the correlation matrix for the forecast errors generated in any given year. The
off-diagonal elements on the upper triangular part of the matrix give the value of
the correlation between errors during any given year. For example, the correlation

FIGURE 7.13 Correlation matrix for Crystal Ball
assumptions defined for the forecast errors in columns
cells C16:L20 of ScooterSimulation.xls.
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between e1,t and e2,t is 0.8, while the correlation between e1,t and e4,t is −0.8.
However, the errors are generated independently from year to year. These forecast
errors are in cells C16:L20, as shown in the spreadsheet segment in Figure 7.14.

The simulation obtains Year t = 1 values for each input by multiplying the
base-case value for each input by one plus its forecast error:

(Market size)1 = 1,000,000(1 + e1,1)

(Market share)1 = 10(1 + e2,1)

FIGURE 7.14 Part 2 of ScooterSimulation.xls. Note that columns E
through K are hidden.
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(Unit price)1 = 375,000(1 + e3,1)

(Unit variable cost)1 = 300,000(1 + e4,1)

(Fixed cost)1 = 3,000(1 + e5,1)

Then the Years t = 2, 3, . . . , 10 values are obtained through the following set of
recursive equations:

(Market size)t = (Market size)t−1(1 + e1,t)

(Market share)t = (Market share)t−1(1 + e2,t)

(Unit price)t = (Unit price)t−1(1 + e3,t)

(Unit variable cost)t = (Unit variable cost)t−1(1 + e4,t)

(Fixed cost)t = (Fixed cost)t−1(1 + e5,t).

This set of equations defines a multiplicative random walk for each input. Thus,
with a combination of Crystal Ball’s Correlation feature and the linking of each
year’s value to the previous year’s values, we are modeling interdependence between
inputs and over time. For this example, we have specified some arbitrary values, but
in practice a risk analyst will be able to estimate the parameters of the forecast error
distributions and the correlations from past projects using company data. Many
firms have enterprise resource planning (ERP) systems from which historical data
can be retrieved to parameterize the simulation model.

Figure 7.15 shows the distribution of NPV for the scooter project. On average,
the project is profitable, but the distribution shows that there is some risk involved
as there is nearly a 40% chance that NPV will be negative. Keep in mind that the
simulation model described here did not account for any managerial flexibility as
did the Project.xls model in Chapter 5. We can easily alter the BMA 2006 model to
contain a set of rules similar to those in the Project.xls model. If we build in rules
such as those we used to model abandonment or expansion in Project.xls, we would
see a similar increase in NPV.

Figure 7.16 shows the distribution of IRR for the scooter project. Because we
unchecked the box in Run Preferences for Stop on calculation errors as described
in Chapter 6, this figure can be somewhat misleading if you look only at the mean
of 20%. In the upper left-hand corner we see that only 8,404 trials were completed
even though we specified a maximum of 10,000 trials and no other stopping criteria.
A mixture of negative and positive cash flows can cause numerical problems with
Excel’s IRR function, and such instances were simulated in the 1,596 trials not
displayed because of error.

Finally, note that cells B12 and B13 in Figure 7.14 show values of $3.43 and
15%, respectively, which differ by more than just sampling error from the means of
$6.02 and 20% shown in Figures 7.15 and 7.16. This is a manifestation of Jensen’s
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FIGURE 7.15 NPV Forecast for ScooterSimulation.xls.

FIGURE 7.16 IRR Forecast for ScooterSimulation.xls.
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Inequality, which states that in general,

E[f (X)] �= f (E[X]). (7.3)

In words, this means that the values of NPV and IRR shown in Figure 7.14 (denoted
by f (E[X]) in Expression 7.3) calculated by plugging in the mean values of the
stochastic assumptions, are not equal to the expected values of NPV and IRR
that we are estimating in Figures 7.15 and 7.16 (denoted by E[f (X)] . Historically,
academics have professed the use of f (E[X]) because of its easiness to calculate by
hand. However, the ubiquity of Excel and the availability of Crystal Ball makes
calculation of E[f (X)] just as easy nowadays.

Caveats

The use of simulation in capital budgeting has been controversial over the years, but
as BMA 2006 point out, it can be a useful tool because the discipline of building a
model of a project can in itself lead you to a deeper understanding of the project.
Once built and validated, experimenting with the model inputs will also further your
understanding.

An institutional advantage of building a simulation model is making explicit and
sharing the assumptions that decision makers are using for planning. Oftentimes,
different divisions of the same company will make different assumptions about a
project on which the divisions are collaborating. Heated discussions sometimes ensue
because representatives from the different divisions are operating under different sets
of assumptions for the same project, but they are not aware that their assumption
sets are different. Having a common simulation model of a project will help to
ensure that everyone is operating under the same assumptions.

CUSTOMER NET PRESENT VALUE

The general principle underlying customer lifetime value (CLV) analysis is that
customers are financial assets that organizations should manage just like any other
asset. Blattberg, Getz, and Thomas (2001), Reichheld (1996), Dwyer (1997), and
others have written much about the qualitative and quantitative aspects of managing
customers to improve CLV. In this chapter, we will see a simple Crystal Ball model
that demonstrates how to calculate distributions of CLV for customer segments with
different retention rates.

The model in Figure 7.17 is based on data given for the Buford Electronics case
study presented in Blattberg, Getz, and Thomas (2001). In this example, there are
two customer segments: the low-volume segment, who are customers from whom
the company receives revenues of less than $3,000 per year; and the high-volume
segment, who are customers from whom it receives revenues between $25,000 and
$100,000 per year.
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FIGURE 7.17 Model in LifetimeValueModel.xls for computing customer
lifetime values for two different customer segments.

Cells C9:C18 and C22:C31 are Crystal Ball yes-no assumptions that take the
value 1 if the customer quits buying from Buford during the year and 0 otherwise.
We assume that Buford receives the revenues and pays the retention costs during the
year that a customer quits, but the customer never returns after quitting in any year.
For each yes-no assumption, the probability of quitting is the complement of the
retention rate in the same row of column B in the spreadsheet. Cells D10:D18 and
D23:D31 use Excel =IF formulas to model the fact that once a customer quits, he
does not return in a later year. The actual margins in cells H9:H18 and H22:H31 are
gross profit margins earned from the customer if he is retained that year. These are
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normally distributed random variables with means and standard deviations given in
columns F and G.

The values in cells I9:I18 and I22:I31 are the profits (Actual Margin minus
Retention Cost) for each year, discounted to reflect the time value of money. Cells A4

FIGURE 7.18 Forecast charts for CLVs of two customer segments in
LifetimeValueModel.xls.
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and A5 use Excel’s =SUMPRODUCT formula to compute the NPV of each customer
segment, which are defined as Crystal Ball forecasts.

Results

Figure 7.18 shows the results from 10,000 simulation trials. The low-volume cus-
tomer segment is more profitable on average than the high-volume segment, and the
distribution of NPV for high-volume customers shows that a significant proportion
(nearly 70 percent) are unprofitable, that is, have negative NPV. This difference
in CLV is explained by the higher retention costs and lower retention rates of the
high-volume customer segment. Some authors advocate a management approach to
proactively identify and abandon unprofitable customers. See Blattberg, Getz, and
Thomas (2001) or Haenlein, Kaplan, and Schoder (2006) for more details about
this approach.



CHAPTER 8
Modeling Financial Statements

P erhaps the most widely used financial models are the pro forma income statement
and balance sheet. Most companies use deterministic versions of these models

for planning, and they are a natural place to start when constructing a Crystal
Ball model. Especially when decision makers are first exposed to risk analysis with
Crystal Ball, it is best to make your stochastic models resemble as much as possible
the deterministic models to which decision makers in your company are already
accustomed.

In this chapter, we start with deterministic pro forma statements from Chapter 6
of Sengupta (2004), which is an excellent source for more information on construct-
ing deterministic financial models in Excel. In this chapter, we will focus on using
Crystal Ball with an existing deterministic model, just as you might do on the job.
We walk through use of the basic tools to get you started. As you gain experience,
you will be tempted to make your models far more complex than those presented
here. However, do not add complexity just for its own sake. It is far better to start
with a simple model, and add complexity only if necessary to help make a sound
decision.

DETERMINISTIC MODEL

Figure 8.1 shows the historical income statement for 1999–2002 for the Vitex
Corporation example from Chapter 6 of Sengupta (2004). Figure 8.2 shows the
balance sheets for 1999–2002 for the Vitex Corporation. Our job is to project these
measures forward using historical data and input from management about the future
uncertainty.

We begin thinking about the uncertain future by looking to the past. While it is
always true that there are no guarantees the future will resemble the past, historical
data are often the best information you will have available. Furthermore, if you do
have available to you a better source of information about what portends for your
company’s fortunes, then you can easily incorporate it in a Crystal Ball model using
the methodology described here.

Figure 8.3 shows the common size statements for 1999–2002 for the Vitex
Corporation from Sengupta (2004). These are created by dividing each year’s
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FIGURE 8.1 Historical income statement in Sengupta.xls.

income statement line items by the corresponding year’s sales so that each line item
in the common size statement is expressed as a percentage of sales. By looking at the
variability of common size line items over the years, we gain an idea of how much
variability to expect in each line item. Then we can quantify the impact of each item
on the bottom line.

TORNADO CHART AND SENSITIVITY ANALYSIS

Figure 8.4 shows a Crystal Ball model for 2002–2006 for the Vitex Corpora-
tion income statement from Sengupta (2004), which we use to create a tornado
and sensitivity chart. Cell J6 models the average changes in sales across years as
a uniform(1%,10%) Crystal Ball assumption based on information provided by
management on the possible variation they see for sales. Cells J7, J10, and J12
are uniform(48%,52%), uniform(27%,30%), and uniform(−1%,0%) assumptions,
respectively. These parameters were selected based on the common size statements,
and were defined to facilitate use of the tornado chart and sensitivity chart to see
which variables had the greatest impact on the forecast, EBIT in 2006.

Figure 8.5 shows a tornado chart for the Crystal Ball model for 2002–2006 for
the Vitex Corporation income statement from Sengupta (2004). This shows that the
sales forecasting factor had the largest impact, then cost of sales, followed by sales,
general and administrative (SG&A) expenses.
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FIGURE 8.2 Balance sheet in Sengupta.xls.

FIGURE 8.3 Common-size statements in Sengupta.xls.
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FIGURE 8.4 Crystal Ball model for income statement in Sengupta2.xls. Cells J6,
J7, J10, and J12 are Crystal Ball assumptions, and I3 is a forecast.

FIGURE 8.5 Tornado chart for Crystal Ball model in Sengupta2.xls.
The values of the Crystal Ball assumptions were varied from the 1st
percentile to the 99th percentile in five equally spaced steps.
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FIGURE 8.6 Sensitivity analysis chart for Crystal Ball model
in Sengupta2.xls.

CRYSTAL BALL SENSITIVITY CHART

Figure 8.6 shows a sensitivity chart for the Crystal Ball model for 2002–2006 for
the Vitex Corporation income statement from Sengupta (2004). This chart shows
results similar to those obtained from the tornado chart, but indicates an even larger
impact from the sales forecasting factor. See Chapter 2 for an explanation of the
differences between these two types of charts.

Figure 8.7 shows a Crystal Ball model for 2002–2006 for the Vitex Corpo-
ration income statement from Sengupta (2004). Note that this models the annual
changes in sales and cost of sales as a percentage year-by-year as Crystal Ball
assumptions. In Chapter 11, we look closer at modeling financial time series with
this sort of multiplicative random walk model, and introduce more models for
simulating financial time series.

Figure 8.8 shows a forecast chart for the Crystal Ball model for 2002–2006
for the Vitex Corporation income statement from Sengupta (2004). A 95 percent
certainty interval for earnings before interest and taxes (EBIT) in 2006 is from
$201.5 to $309.2.

CONCLUSION

In modeling financial statements, our intent is to project financial measures into
the future to help make informed decisions about the activities that result in these
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FIGURE 8.7 Crystal Ball model in Sengupta3.xls.

FIGURE 8.8 Forecast chart for Crystal Ball model in Sengupta3.xls.

measures. Deterministic versions of pro forma statements have long been used
for answering ‘‘what-if’’ questions about the bottom-line impact of managerial
decisions, and a Crystal Ball model can be viewed as a type of more-sophisticated
what-if analysis from which decision makers can gain more insight than from a
deterministic model.
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The procedure for modeling financial statements is to identify the key inputs, as
we did with the tornado chart, which varied many inputs one at a time to see the
impact on the key output, EBIT in 2006. Any output may be specified depending
on the decision maker’s interest. Because we used sales-driven forecasting, it is
no surprise that we found sales growth to be the most important driver of 2006
EBIT. This emphasizes the need to come up with a good model for defining sales
assumptions.

We started with common-size statements to see which percentages are stable
over time and which are variable. We usually base our projections on historical
data where they are available, but can incorporate other educated guesses too, if
they are encapsulated in probability distributions that are used to define Crystal Ball
assumptions. When historical data are available, a popular technique is to obtain
subjective estimates from subject matter experts for the parameters of Uniform or
Triangular assumptions.

The procedure for modeling financial statements is to identify the key inputs, as
we did with the Tornado Chart, then observe key outputs like EBIT in 2006. Any
output may be specified depending on the decision maker’s interest. Because we used
sales-driven forecasting, it is no surprise that we found sales growth to be the most
important driver of 2006 EBIT. This emphasizes the need to come up with a good
model for defining sales assumptions.



CHAPTER 9
Portfolio Models

C rystal Ball is very useful for investigating different allocations of investment funds
to a set of risky assets. This chapter demonstrates the use of Crystal Ball and

OptQuest for determining the optimal allocation of funds in an investment portfolio
based on the decision maker’s risk tolerance. We use Crystal Ball and OptQuest to
find an optimal allocation for a situation where we know the true optimal allocation,
and one where we do not.

SINGLE-PERIOD CRYSTAL BALL MODEL

In this example, we consider investing in the five asset classes listed in Table 9.1.
Figure 9.1 shows a segment of the single-period Crystal Ball model in Portfolio.xls.
Cells B12:E88 contain annual rates of return in percent on four asset classes. These
rates of return were calculated from the indices contained in the Indices worksheet
of Portfolio.xls. The indices were constructed from data collected from various
sources for use only in the examples presented in this book. For more specific data
on asset returns available to investors during the period 1926–2002 (and more),
see the Center for Research in Security Prices (www.crsp.com), Ibbotson Associates
(2006), or Bodie, Kane and Marcus (2008).

Overview. Assume that you have four asset classes from which to choose
for an investment portfolio. These classes are listed in Table 9.1 along

TABLE 9.1 Means and standard deviations for annual total returns, 1 + ri, during the
period 1926–2002 for four asset classes.

Mean Std.
Asset Class Name Return Dev.

Large-Company Stocks LCS 1.1212 0.2052
Small-Company Stocks SCS 1.1734 0.3607
Corporate Bonds CB 1.0595 0.0794
U.S. Government Bonds USGB 1.0559 0.0699
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FIGURE 9.1 Spreadsheet segment from model to simulate a portfolio.

TABLE 9.2 Pearson correlation matrix for annual total
returns during the period 1926–2002 for four asset classes.

LCS SCS CB USGB

LCS 1
SCS 0.787 1
CB 0.174 0.035 1
USGB 0.104 −0.032 0.948 1

with their historical mean total returns, and standard deviations. The
Pearson correlations for the five asset classes are in Table 9.2. The data
from which these parameters were estimated are in Cells B12:E88 of the
Stochastic Model tab of Portfolio.xls.
To keep things simple we will assume that you have $10,000 to invest
(Cell A4) and wish to find the optimal percentage of your $10,000 to invest in
each of the asset classes (B8:E8). We ignore the effects of inflation for now.

Forecast. The forecast for this example is portfolio value in cell F8, the value
of the portfolio in Year 1.

Stochastic assumptions. The assumptions are defined in cells N13:Q13 by
using Batch Fit to find the distributions and Spearman correlations.
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TABLE 9.3 Spearman correlation matrix for annual total
returns during the period 1926–2002 for four asset
classes.

LCS SCS CB USGB

LCS 1
SCS 0.811 1
CB 0.124 0.047 1
USGB 0.013 -0.045 0.936 1

The assumptions are referenced in cells B7:E7. Batch Fit was limited
to considering only normal or lognormal distributions for the historical
returns. The normal distributions used for LCS and SCS were truncated at
zero to reflect the limited liability of investing in equities. Batch Fit found that
lognormal distributions fit better to CB, and USGB. Lognormal distributions
are bounded by zero from below by definition, so needed no truncation. The
Spearman correlation matrix computed by Batch Fit is shown in Table 9.3.

Decision variables. Each decision variable in cells B8:E8 represents the per-
cent of the initial investment allocated to the corresponding asset class. Each
decision variable is defined with a lower bound of 0 percent, an upper bound
of 100 percent, and a step size of 1.0 percent. By assuming a lower bound of
0 percent we are precluding the possibility of selling short any of the asset
classes. The upper bound of 100 percent precludes borrowing to buy on
margin or selling short. The step size of 1 percent is specified to make the opti-
mization converge on a solution more quickly than with a smaller step size.

Summary. The results shown here were found when using OptQuest to
maximize the mean of the total return forecast in cell F8, with the additional
requirement that the standard deviation of total return be no more than
$1,000. The optimal allocations are (27 percent, 11 percent, 0 percent, 62
percent) for (LCS, SCS, CB, USGB) as shown in cells B8:E8 in Figure 9.1.
For these allocations, the mean portfolio value is $10,865 with a standard
deviation of $998.87. By running OptQuest for longer than the 60 minutes
used to obtain these results, one may be able to improve on the results
slightly.

SINGLE-PERIOD ANALYTICAL SOLUTION

The worksheet Analytical Solution in Portfolio.xls shows the the optimal allocation
to each asset class based on using Solver in Excel to maximize the mean return
subject to the standard deviation of the portfolio remaining less than or equal to 10
percent. The optimal allocation is (.22, .13, .00, .65) for (LCS, SCS, CB, USGB).
This is the solution to the following mathematical programming problem:
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max
α1,α2,α3,α4

E(P) =
4∑

i=1

αiE(1 + ri)

subject to
4∑

i=1

αi = 1

√
αTSα = σ (P) ≤ 10%

0 ≤ ri ≤ 1 for all i,

where E(P) is the expected return on the portfolio, σ (P) is the standard deviation of
the portfolio return, αi is the portfolio weight allocated to asset i = 1, 2, 3, 4 for the
ordering of assets (LCS, SCS, CB, USGB) as shown in cells J18:J21, and ri is the
mean rate of return for asset i. The 4 × 4 matrix S is the covariance matrix shown
in cells H4:K7. For the optimal allocation, the expected return is 8.6 percent with a
standard deviation of 10 percent.

It is not surprising, but is reassuring that this allocation agrees with the OptQuest
allocation. For this simple problem, we can be certain that the deterministic solution
gives us the optimal allocation for the given values of the means, standard deviations,
and correlations. Because OptQuest is a heuristic technique subject to sampling
variation, there is no guarantee that it will find the globally optimal solution.
However, the fact that the OptQuest solution is so close to the known deterministic
solution in this simple case encourages us to believe that OptQuest will also find
solutions that are very close to the global optimum in problems that are too
complicated for deterministic solutions to be used.

MULTIPERIOD CRYSTAL BALL MODEL

For investment advisors, a major consideration in planning for a client in retirement
is the determination of an appropriate asset allocation that will enable the client
to withdraw funds necessary to maintain his or her desired standard of living. If a
client withdraws too much or if investment returns fall below expectations, there is
a danger of either running out of funds or reducing the desired standard of living. In
the model presented in this section we assume that the client is a woman. As women
have slightly longer life expectancies than men, our results are conservative when
applied to the retirement portfolio planning problem for a man of the same age.

The sustainable retirement withdrawal is the amount a client can withdraw
periodically from her retirement funds for a selected planning horizon. This amount
cannot be determined with complete certainty because of the stochastic nature of
investment returns. In practice, the sustainable retirement withdrawal is determined
by limiting the probability of running out of funds to some specified level, such as
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5 percent. The sustainable retirement withdrawal amount is typically expressed as a
percentage of the initial value of the assets in the retirement portfolio, but is actually
the inflation-adjusted monetary amount that the client will use each year for living
expenses.

Suppose that at the end of 2002, a 60 year-old woman has $1 million in a
tax-deferred retirement account, and that she would like to withdraw $40,000 per
year in 2002 dollars. Assume that she has a life expectancy of 30 years, and that the
inflation rate will be 3.12 percent. Her withdrawal in each year is $40,000 adjusted
by the inflation rate. That is, her withdrawal at the end of 2003 will be $41,248, at
the end of 2004 will be $42,535, and so on.

In this scenario, her retirement withdrawal, or ‘‘spending rate’’ is specified at
4 percent based on the initial balance of her total retirement funds. Her retirement
portfolio planning problem is to allocate her initial $1 million to the asset classes
available to her for investment, while maximizing her spending rate without running
out of funds before she dies. An optimal choice of spending rate and allocations
can be defined as one that limits to 5 percent the chance that she spends all of
her accumulated wealth at the end of a deterministic, 30-year planning horizon. As
a secondary issue, she may also be concerned with the value of her estate that is
bequeathed to her heirs when she dies.

For this model, the data in Portfolio.xls were used to parameterize the Crystal
Ball model by using Crystal Ball’s Batch Fit tool. Table 9.1 shows the means and
standard deviations of the annual returns (in percent) during the period 1926–2002
for four asset classes: large-company stocks (LCS), small-company stocks (SCS),
corporate bonds (CB), and U.S. government bonds (USGB). Table 9.3 shows the
Spearman correlation matrix for these four asset classes during the same period. The
annual rate of inflation during 1926–2002 averaged 3.12 percent.

The model in SustainableRetirementWithdrawals.xls generates stochastic
returns in cells I11:L71 for the assets LCS, SCS, CB, and USGB in years 2003–2063.
The four returns in each row are correlated with each other, but each row is statisti-
cally independent of the other rows. The Spearman correlations, in cells G78:J81,
were computed by the Batch Fit tool. Crystal Ball’s Correlation Matrix tool was used
to create the upper triangular matrix in cells K78:N81, which references the Spear-
man correlations. These are the values used by Crystal Ball during the simulation
trials.

The portfolio weights of the asset classes in cells I8:L8 are defined as decision
variables in the range [0, 1] (i.e., no short sales nor margin purchases are allowed)
in steps of 1 percent. At the end of each simulated year, a constant real amount (in
2002 dollars) is withdrawn for living expenses. The withdrawal amount is defined
as both a decision variable and a forecast variable in Crystal Ball. The portfolio is
assumed to be composed entirely of tax-deferred dollars and the effects of taxes on
the amounts withdrawn are not considered.

We consider two different planning horizons: (1) a deterministic 30-year hori-
zon, and (2) a stochastic horizon equal to the remaining lifetime of the woman
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FIGURE 9.2 Custom distribution representing the death age of a 60-year-old female as given by the
2001 CSO mortality table.

characterized by the 2001 Commisioner’s Standard Ordinary (CSO) mortality table.
The distribution of the death age of a 60 year-old woman is shown in Figure 9.2.

In OptQuest, the percentage allocation to each asset class and the withdrawal
rate are specified as decision variables. The percentage allocations are bounded by 0
and 100 and are constrained to sum to 100 percent. An indicator variable is defined
as a Crystal Ball forecast for the event that wealth at the end of each planning
horizon is positive. The withdrawal rate forecast variable in cell H4 is specified as
the objective to be maximized with an additional requirement that the mean of the
positive-wealth indicator variable have a lower bound of 0.9540. To account for
sampling error in the estimates used by OptQuest in its optimization algorithm, this
lower bound exceeds 0.9500 by approximately two standard errors of the mean of
the positive-wealth indicator variable resulting from 4,000 trials. Table 9.4 shows
the allocations obtained for two different planning horizons:

1. A deterministic horizon of 30 years.
2. A stochastic horizon equal to the woman’s remaining lifetime.

From a final run of 10,000 trials of the Crystal Ball model for the deterministic,
30-year horizon, the estimated median value of the woman’s wealth is $3.79 million,
with a 95.30 percent probability of being solvent (wealth greater than zero) at the
end of 30 years. Figure 9.3 shows the distribution of wealth at the end of 30 years.
For the stochastic, remaining lifetime horizon, the estimated median value of her
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TABLE 9.4 Optimal asset allocations and sustainable
withdrawal rates for two planning horizons.

Horizon LCS SCS CB USGB Spend

30-year .25 .12 0 .63 4.08%
Rem. life .23 .13 0 .64 4.53%

estate is $1.78 million, with a 95.25 percent probability of leaving to her heirs an
estate greater than zero. Figure 9.4 shows the distribution of her estate.

Her spending rate is 4.08 percent with a fixed 30-year horizon, and 4.53 percent
with a stochastic horizon. With an initial investment of $1 million, the difference
between the spending rates amounts to an additional $4,500 in 2002 dollars to
spend each year. This differential stems primarily from the fact that the retiree has
a high likelihood of dying before she reaches age 90. For the assumptions stated
above, our analysis quantifies the risk of dying broke if one chooses to withdraw
more to live better during retirement.

From comparison of the results in Table 9.4 and Figures 9.3 and 9.4, it is evident
that very large stock allocations are not necessary for sustainability of withdrawals.
In fact, allocation of a majority of the portfolio to equities will increase the likelihood
of depleting the retiree’s funds during her lifetime. For both planning horizons, the
split between debt and equity in the retirement portfolio is roughly 60–40.

FIGURE 9.3 Distribution of wealth after 30 years with asset allocations
listed in Table 9.4 for the 30-year planning horizon.
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FIGURE 9.4 Distribution of the retiree’s estate with asset allocations and
withdrawal rate listed in Table 9.3 for the remaining-lifetime planning
horizon.

This example is intended only to demonstrate the use of Crystal Ball and Opt-
Quest for financial planning. A more thorough analysis would include analyses of
other potential investments, such as real estate or international equities, and more
specific and recent data on the components of the asset classes used in this chapter.
However, the analysis presented here does serve to inform individuals who are facing
retirement about the tradeoffs involved in the retirement portfolio planning problem,
and gives financial planners an idea of how to use Crystal Ball and OptQuest to
demonstrate to their clients the risks involved in retirement planning.



CHAPTER 10
Value at Risk

M any times one wants to know for planning purposes what is the ‘‘worst that can
happen.’’ In many situations, the worst that can happen is to lose one’s entire

investment; however, this usually has an extremely low probability of occurrence.
The concept of Value at Risk (VaR) was devised to obtain a risk measure that
associates a severe loss with a probability level of reasonable interest to the decision
maker, such as 1 percent or 5 percent. See Jorion (2001) for more about VaR. In
this chapter, we see how to use Crystal Ball to find VaR and a related measure,
Conditional VaR (CVaR).

VAR

In practice, we can think of a potential loss L as the worst that can happen if the
probability of losing L or more during a selected time period is a specified amount
such as 5 percent. In that case, L is called the ‘‘5 percent Value at Risk (VaR).’’
More precisely, let R denote the total return (in dollars) on an investment, I, and let
c denote the α percentile of the distribution of R. Then the α percent VaR is defined
as L = I − c.

Figure 10.1 shows a segment of the one-year Crystal Ball model in PortfolioVaR.
xls, which is adapted from the file Portfolio.xls described in Chapter 9. The potential
loss from investing in the portfolio, I − R, is measured directly in cell B11 with the
Excel formula =A4-A11, which is simply the difference between the initial investment
and the final value of the portfolio. A copy of the forecast window for this quantity is
shown at the bottom of the spreadsheet segment in Figure 10.1. Because the certainty
is 95 percent that portfolio loss is between −Infinity and $792.47, we say that the 5
percent VaR for one year is $792.47. Note that when we find the α percent VaR from
the loss (I − R) distribution, we use the (1 − α) percentile in the upper tail rather than
the α percentile, c, in the lower tail of the distribution of R.

VaR is used by regulators to compute capital requirements for financial insti-
tutions, and by managers as an input to risk-management decisions. VaR can also
be used by managers to assess the quality of their models. For example, if a model
provides that there is a 5 percent chance that a bank’s trading operations will lose
$1 million over a 1-day horizon, then on average the trading operation should lose

140
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FIGURE 10.1 Spreadsheet segment from model to illustrate the concept of Value at Risk (VaR).

$1 million or more on 5 percent of the days in a randomly selected period. If there
are many more losses, it implies that the model assigns too little risk to the situation.
If there are many fewer losses, it implies that the model assigns too much risk. In
this sense, VaR can therefore be used to check the validity of a model.

Some regulators have adopted VaR as part of their risk management guidelines,
but critics of this measure have pointed out some of its shortcomings, which are
discussed in the next section.



142 FINANCIAL MODELING WITH CRYSTAL BALL AND EXCEL

SHORTCOMINGS OF VAR

VaR provides no information about the extent of losses that might occur beyond
the threshold level. In that sense it is very optimistic because it gives a lower bound
on potential loss at the α percent level. Further, it is not always subadditive, which
means that the VaR of the combination of two or more investments can exceed
the sum of the individual VaR for each investment. This is contrary to the basic
principle of diversification, which holds that risk will decrease when more assets are
held, not increase. This failure to reward diversification is perceived as the greatest
shortcoming of VaR. An alternate risk measure, Conditional Value at Risk (CVaR),
overcomes these shortcomings.

CVAR

Conditional Value at Risk (CVaR) is the expected value of losses beyond the
threshold level. Figure 10.2 shows a forecast window for the portfolio loss in
PortfolioVaR.xls. During the definition of cell C11 as a forecast, a filter was set on
the forecast values to exclude values in the range −Infinity up to $792.47. That is
why ‘‘500 Trials’’ appears in the upper left part of the forecast window, even though
10,000 trials were run. The mean of these 500 largest forecast values is $1,192.56.
In general, the α percent CVaR is the expected value of losses that exceed the α

percent VaR level. Figure 10.3 depicts the 5 percent VaR and CVaR on the loss
distribution for a one-year holding period for the portfolio in PortfolioVaR.xls.

FIGURE 10.2 Filtered forecast window for Portfolio Loss in
Figure 10.1.
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FIGURE 10.3 Forecast window for Portfolio Loss in Figure 10.1
showing the 5 percent VaR over one year of $1,967 and the
corresponding CVaR of $2,794.

Investments with high CVaR will necessarily have high VaR as well. CVaR,
which is also called Conditional Tail Expectation, Expected Tail Loss, Mean Excess
Loss, Mean Shortfall, or Tail VaR, is considered to be a more ‘‘coherent’’ measure
of risk than VaR. Artzner, Delbaen, Eber, and Heath (1999) describe subadditivity
and other coherent measures of risk in detail. Uryasev (2000) and Hardy (2006) are
good references on the basics of CVaR.

CVaR.xls
The file CVaR.xls, a segment of which is shown in Figure 10.4, contains a simulation
model of a three-asset portfolio. Assets 1, 2, and 3 have mean returns of 10 percent,
12 percent, and 13 percent, respectively, with variance-covariance matrix




0.10 0.04 0.03
0.04 0.20 −0.04
0.03 −0.04 0.30



 .

The variance-covariance matrix is contained in cells B9:D11, and the corresponding
Pearson correlation matrix is computed in cells B14:D16. As correlation matrices
are symmetric, it appears as a lower triangular matrix. The variance-covariance
matrix is used in an Excel array formula in this example (cell C32), so the entire
symmetric matrix is in the file.

The Crystal Ball model simulates returns from a portfolio with weights 0.30,
0.25, and 0.45, invested in Assets 1, 2, and 3, respectively. Asset rates of return are
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FIGURE 10.4 Crystal Ball model to find VaR and CVaR.

normally distributed, but truncated at −100 percent. The model has four forecast
cells: Asset1 Value, Asset2 Value, Asset3 Value, Total Value. To reproduce the
results tabulated below, run 10,000 Trials with LHS and Seed = 813.

To get the 1 percent VaR and CVaR values from Crystal Ball, first find the 1st
percentile of each forecast using using the command

=CB.GetForePercentFN(Range,Percent)

as shown in cells B25:E25. Then use

Preferences→Forecast . . . →Filter Tab

to set a filter on the forecast values to include values in the range −Infinity to the 1st
percentile (entered as a number) of each forecast. The means of the filtered values are
used to compute the α = 1 percent CVaR for each asset and the portfolio as shown
in Table 10.1. Again, CVaR is preferred by some analysts because it is subadditive,
which means that the CVaR of the portfolio is always less than or equal to the sum
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TABLE 10.1 VaR and CVaR for three assets and portfolio modeled in
CVaR.xls.

1st Percentile Investment VaR CVaR

Asset1 Value $ 10.98 $ 30.00 $ 19.02 $ 21.86
Asset2 Value $ 4.03 $ 25.00 $ 20.97 $ 22.72
Asset3 Value $ 4.20 $ 45.00 $ 40.80 $ 42.76
Portfolio Value $ 49.05 $ 100.00 $ 50.95 $ 56.75

of the individual CVaRs of the portfolio components. VaR is not always subadditive
(although it is so in this example), which means that the risk of a portfolio can be
larger than the sum of the stand-alone risks of its components when measured by
VaR. The CVaR is also less sensitive to changes in the defining percentile α than
is VaR.

CVaRSubadditivity.xls

The model in Figure 10.5 is a Crystal Ball simulation of an analytical result presented
by Tasche (2002). The model simulates investments in each of two independent

FIGURE 10.5 Crystal Ball model to demonstrate
subadditivity of CVaR in a situation for which VaR is not
subadditive.
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TABLE 10.2 VaR and CVaR for
independent investments modeled in
CVaRSubadditivity.xls.

1% VaR 1% CVaR

Total Loss $ 209.51 $ 4,687
Loss1 $ 98.22 $ 2,392
Loss2 $ 99.27 $ 2,407

opportunities with potential losses X1 and X2. Both X1 and X2 loss distributions
have Pareto distributions with Location Parameter = 1 and Shape Parameter =
1. Cell D4 is a Crystal Ball forecast representing the loss on the first opportunity,
Loss1 = X1. Cell D5 is a Crystal Ball forecast representing the loss on the second
opportunity, Loss2 = X2. Cell D6 is a Crystal Ball forecast representing the total
loss, Loss1 + Loss2. The VaR and CVaR of the Loss1, Loss2, and Total Loss are
shown in Table 10.2. The table shows that CVaR is subadditive because the CVaR
for Total Loss, $4687 is less than the sum of the CVaRs for Loss1 and Loss2,
$4799 = $2392 + $2407. However, VaR is not subadditive because the VaR for
the Total Loss, $209.51, is greater than the sum of the VaRs for Loss1 and Loss2,
$197.49 = $98.22 + $99.27.

In other words, the 1 percent VaR for the portfolio is greater than the sum
of the 1 percent VaRs of the investments considered individually. The principle
of diversification holds that risk is lower when two or more assets are combined
into a portfolio. As VaR indicates in this example that the risk of holding the
portfolio is greater than the sum of the risks of holding each portfolio component
individually, VaR is not a satisfactory measure of risk in this example. However,
CVaR indicates correctly that the risk of holding the portfolio is lower than the sum
of the component risks, and so it is a satisfactory measure of risk from this point of
view.



CHAPTER 11
Simulating Financial Time Series

I n financial modeling, we encounter two main types of time-series data:

1. Observations that appear to be independent and identically distributed (IID).
2. Observations that do not appear to be IID because they follow a trend or some

other pattern over time.

Financial theory provides a compelling argument—the efficient markets hypothe-
sis—that returns on investments must be independent over time because no one
has access to information not already available to someone else. If returns are
independent, however, prices will be dependent over time and we will require a way
to model that dependence. This chapter presents some models that can be used for
projecting future returns, asset prices, and other financial times series in simulation
models for risk analysis.

WHITE NOISE

A white noise process is defined to be one that generates data appearing to be IID.
It takes its name from the fact that no specific frequency or pattern dominates in
a spectral analysis of the observations, similar to white light, or the noise of static
emitted from an AM radio that is not tuned in to a station.

The model for a white noise process is

Wt = µ + εt, (11.1)

where µ is a constant, and εt is a sequence of uncorrelated random variables
identically distributed with mean zero and finite variance for t = 1, . . . , T. The
probability distribution of εt is not necessarily normal, but if it is the process is said
to be Gaussian white noise named after the eighteenth-century mathematician, Carl
F. Gauss, who studied the properties of the normal distribution.

For example, we can simulate observations from a Gaussian white noise process
with Crystal Ball by placing several uncorrelated Normal(0,10) assumptions in a
column, adding a constant, say µ = 200, and plotting the results as was done in the
file RandomWalk.xls. Figure 11.1 shows the model. In cells B6:B35 are Crystal Ball

147
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FIGURE 11.1 Model to compare a white noise process to a
random walk. Note that rows 8 through 33 are hidden.

normal(0,10) assumptions that we denote as εt for t = 1, . . . , 30. A Gaussian white
noise process was generated in cells C6:C35 using Expression 11.1, and a time series
plot of one realization of the process appears in the center of Figure 11.1. Notice
how the independence of the observations in the white noise process is manifested
in the choppiness of its plot. For the white noise process, no matter where each
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observation falls, the next observation is equally likely to be above or below the
mean of 200. This characteristic causes the choppy look.

RANDOM WALK

One form of a non-IID process is the additive random walk process defined by

Yt = Yt−1 + εt (11.2)

for t = 1, . . . , T. For example, in RandomWalk.xls, we set T = 30 and Y0 = 200,
then generated observations from the process in Expression 11.2 in cells D6:D35,
using the values in B6:B35 for εt, t = 1, . . . , 30.

A time series plot of one realization of the random walk process appears in the
lower time series plot in Figure 11.1. Notice how the random walk process exhibits
a meandering pattern. The first few points are below the mean, then once the plot
goes above the mean, it tends to stay above for a while, then heads down and goes
below the mean again before eventually heading back up. Even though the changes
in the level of the random walk are independent, the levels themselves are dependent
over time. This dependence causes more variability in the levels of the random walk
process than is evident in the levels of the white noise process.

The aggregate effect of the dependence of the levels of the random walk
compared to the white noise process can be seen in Figures 11.2 and 11.3. Because
the observations in the white noise process are IID, the forecast chart in Figure 11.2
has a mean of µ = 200 and standard deviation of σ = 10, as do all of the observations

FIGURE 11.2 Forecast chart for the observation at time t = 30 for
the random process.
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FIGURE 11.3 Forecast chart for the observation at time t = 30 for
the random walk.

Wt in the white noise process for t ≥ 1. The mean of the additive random walk
process is also 200 for every observation, but the standard deviation grows larger
every time period because we are adding on another random change. It can be
shown that each value Yt of the random walk process has a mean of µ = 200 and
a standard deviation of σ

√
t. In Figure 11.3 you can see that the standard deviation

(10
√

30 = 54.77) is much greater than the standard deviation (10) of the forecast
in Figure 11.2. The scales of the horizontal axes of these two plots were specified
to be equal so that the difference in variability between the white noise process and
random walk was apparent. However, the scales of the vertical axes in Figures 11.2
and 11.3 are different. Figure 11.4 is another illustration of the differences in these
forecasts with an overlay chart for cells C35 and D35.

For a dynamic illustration of the difference between white noise and a random
walk, see the file RandomWalk.xls. In Run Preferences, set Run Mode to Demo
and watch the time series plots to see the difference in behavior when the simulation
is running. The white noise process will bounce almost entirely within the 3σ bounds
of 170 to 230 at every point in time, while the random walk will exhibit increasing
variability as t gets larger.

AUTOCORRELATION

Chapter 4 showed how to calculate both Pearson and Spearman correlations between
two variables with Excel. When checking for independence of a series of values over
time, we calculate the autocorrelation, which is the correlation coefficient of the
values in the series that are separated by a specific length of time. In this context,
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FIGURE 11.4 Overlay chart to compare the time t = 30 observations
from a white noise process and a random walk.

the prefix auto–means same, so the autocorrelation is the correlation of the values
in a time series with other values within the same series. Sometimes authors refer to
autocorrelation by the term serial correlation to emphasize the correlation within a
time series.

While the correlation coefficients for values separated by two or more time
periods are also of interest in time series analysis, for our purposes it is sufficient
to think only about first-order autocorrelation, which is the correlation between
values in a time series that are separated by one unit of time. Thus, first-order
autocorrelation is also called Lag-1 autocorrelation. Unless specified otherwise, the
term autocorrelation in this chapter is meant to refer to first-order autocorrelation.
It is usually true with financial time series that if the first-order autocorrelation is
near zero, then the rest of the autocorrelation coefficients will also be near zero.
However, for time series that exhibit seasonality, higher-order autocorrelation could
be significant while lag-1 autocorrelation is low.

To calculate the first-order autocorrelation coefficient for the white noise process
values in cells C5:C35, we entered into cell C3 the Excel formula =CORREL(C5:C34,
C6:C35). As shown in Chapter 4, this calculates the Pearson correlation for the
two arrays C5:C34 and C6:C35. Likewise, cell D3 holds the Excel formula
=CORREL(D5:D34,D6:D35) to find the first-order autocorrelation coefficient for
the random walk time series in cells D6:D35. Note that there are other methods
to calculate the autocorrelation coefficient having more appeal to purists, but Excel
does not yet include these other methods in its arsenal of statistical functions. For
more discussion of this point and other methods for calculating autocorrelation
coefficients, see pages 330–340 of Priestley (1981), or section 2.2 of Tsay (2002).
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Of course, with more work, you can always use Excel to calculate the autocorre-
lation coefficient by one of the other methods. For example, another way to calculate
the first-order autocorrelation coefficient, ρ̂1, for observed values yt, t = 1, 2, . . . , T is

ρ̂1 =
∑T

t=2(yt − y)(yt−1 − y)
∑T

t=1(yt − y)2
,

where y = ∑T
t=1 yt/T. This version of the autocorrelation was calculated in cell Q6

for the white noise process in cells C6:C35 of RandomWalk.xls.
To see how these autocorrelation coefficients vary during simulation trials, they

have been defined as Crystal Ball forecasts. Figure 11.5 shows the forecast chart for
cell C3, the autocorrelation coefficient for the white noise process values. By the way
these values were generated, we know that they are independent over time, so their
true autocorrelation is zero. However, in any given simulation trial the calculated
(sample) autocorrelation coefficient can differ from zero simply because of sampling
error. It can be shown that the sampling error for the first-order autocorrelation
coefficient calculated for an IID time series of length T has a standard deviation
of approximately 1/

√
T, so we would expect the standard deviation of the 10,000

values plotted in Figure 11.5 to be 1/
√

30 = 0.183 and roughly 95 percent of the
values to fall within the two standard error interval (−0.366, 0.366). Figure 11.5
shows that 95.86 percent of the observations actually fell within that interval during
the 10,000 simulation trials, which agrees with what we expect. Furthermore, the

FIGURE 11.5 Forecast chart for the autocorrelation coefficient for the
random process.



Simulating Financial Time Series 153

FIGURE 11.6 Forecast chart for the first-order autocorrelation
coefficient for the random walk process.

sample standard deviation of the distribution in Figure 11.5 is 0.178, which is also
close to its expected value of 0.183.

Figure 11.6 shows the autocorrelation for cell D3, the autocorrelation coefficient
for the random walk time series. All values of the random walk autocorrelation
coefficient were significantly larger than zero, which is what we expect because the
levels of the random walk process are not independent over time.

To check for a white noise process in practice, you can use the following test
statistic. First, calculate the first-order autocorrelation coefficient, ρ̂1, from the T
time-series observations. Then find Z = ρ̂1

√
T. If the absolute value of Z is greater

than two (|Z| > 2), conclude that the observations do not come from a white noise
process. If you reach this conclusion, then you must decide how best to model the
time series if you want to use Crystal Ball to generate potential future values of the
time series. The rest of this chapter describes some models for you to consider. There
are many models that might be applied, but we show a few of the more popular
models for generating future values of financial times series with Crystal Ball.

Selected models for simulating financial time series are popular because of some
‘‘stylized facts’’ recognized by finance practitioners, and listed in McNeil, Frey, and
Embrechts (2005). For series of daily returns, exchange rates, and commodity prices:

■ Return series are not IID although they show little serial correlation.
■ Conditional expected returns are close to zero.
■ Volatility appears to vary over time.
■ Return series are leptokurtic or heavy-tailed.
■ Extreme returns appear in clusters.
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Varying volatility and clustered, leptokurtic returns can be modeled with some type
of mixture model. The remainder of this chapter describes some models that can be
incorporated in risk analysis spreadsheet models.

ADDITIVE RANDOM WALK WITH DRIFT

The model for an additive random walk with drift is

Yt = µ + Yt−1 + εt (11.3)

for t = 1, . . . , T, where µ is the mean change per time period and εt is an IID
sequence of random variables that is not necessarily normally distributed.

By subtracting Yt−1 from both sides of Expression 11.3, we get

Yt − Yt−1 = µ + εt,

which means that changes in the levels of a random walk with drift process follow
a white noise process.

Generating Values from a Scalar Random Walk with Drift
Process
To simulate potential future values of a time series that you think follows an additive
random walk with drift process, take the first differences of the time series and fit a
Crystal Ball assumption to them. This is illustrated in Figure 11.7.

The values of the time series Yt for t = 1, 2, . . . , 20 in cells B4:B23 of
RandomWalkWithDrift.xls are quarterly sales of an industrial product. The first
differences are found by entering =B5-B4 in Cell C5 and copying this formula down
through cell C23. The autocorrelation coefficient of the first differences is calculated
in cell D4 as 0.184, which is smaller than the two-standard-error value of 0.447
calculated in cell D7. This, combined with the apparent statistical stationarity we
see in the time series plot of the differences in Figure 11.7 lets us conclude that the
differences can be modeled with Crystal Ball as though they are IID.

To generate potential future values of the sales time series, we used Crystal
Ball’s distribution-fitting procedure to fit a Triangular(-69.54,17.99,100.93) distri-
bution to the values in cells C5:C23 and used that distribution to specify Crystal
Ball assumptions in cells C25:C29. The values in B25:B29 are calculated using
Expression 11.3. Cell B25 has the formula =B23+C25. Cell B26 has the formula
=B25+C26, and this was copied and pasted to cells B27 and B28.

You can forecast as many steps ahead as desired using the random walk
model, but realize that in doing so you are assuming implicitly that the distribution
generating the differences remains stationary over the future period for which you
generate values. The adequacy of this assumption depends on the context. It may
well be adequate for a few steps ahead, but the variance of the random walk model
increases linearly with time, so for prolonged use of the model you will want to update
the model by fitting distributions to the new data value changes as you observe them.
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FIGURE 11.7 Crystal Ball model on the ‘‘Scalar Random Walk’’
worksheet of RandomWalkWithDrift.xls for forecasting a time
series with a random walk with drift process. Cells C25:C29 are
Crystal Ball assumptions, and B25:B29 are Crystal Ball
forecasts. Note that rows 8 through 22 are hidden.

Forecasting with Vector Random Walk Model

You can also use the random walk model to simulate observations from time series
that have both autocorrelation and correlation between series. This is illustrated in
Figure 11.8 for the sales of three industrial products labeled X, Y, and Z in columns
B, C, and D. The procedure for forecasting more than one (that is, a vector) time
series is similar to forecasting a single (scalar) time series. However, with a vector
random walk model, we take into account the correlation between changes in time
series at the same time period as well as using the random walk model to induce
autocorrelation among the levels of the time series.
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FIGURE 11.8 Crystal Ball model on the ‘‘Vector
Random Walk’’ worksheet of
RandomWalkWithDrift.xls for forecasting a vector time
series with a random walk with drift process.
Cells E29:G33 are Crystal Ball assumptions, and
B29:D33 are Crystal Ball forecasts. Note that rows 19
through 27 are hidden.

In cells E5:G28 of Figure 11.8, we found the first differences of the X, Y, and
Z time series in cells B4:B28. The autocorrelations in cells E35:G35 indicate that
the differences follow a random process. Using Crystal Ball’s Batch Fit feature, we
modeled the changes in X, Y, and Z as Normal distributions with parameters that
you will find in the file. Figure 11.9 shows the correlation matrix for the changes in
cells M11:O13.

Again, you can forecast as many steps ahead as desired using the vector random
walk model, but realize that you are assuming implicitly that the random processes
generating the differences remain stationary in regard to their distributions and their
cross correlations.
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FIGURE 11.9 Information generated by
Crystal Ball’s Batch Fit tool on the first
differences of the X, Y, and Z times series in
file RandomWalkWithDrift.xls.

MULTIPLICATIVE RANDOM WALK MODEL

If the time series of returns on a financial asset are IID, then we can use a
multiplicative model to generate potential future prices of the asset. This is illustrated
in Figure 11.10, which has data obtained from finance.yahoo.com. Cells B8:B170
hold the monthly adjusted closing prices of the exchange traded fund (ETF) based
on the Standard & Poor’s 500 Composite Stock Price Index with sticker symbol
SPY. Denote these prices as St for t = 1, . . . , 163. Note that the historical prices
are listed in reverse chronological order, with S163 in cell B8, down to S1 in
cell B170. In cells C8:C169, we have calculated the gross returns Rt = St/St−1 for
t = 2, . . . , 163.

The multiplicative model used here to generate potential future prices is

St+1 = St × Rt+1, (11.4)

for t = 164, . . . , 168. These prices are calculated chronologically in cells G9:G13.
The gross returns R164, . . . , R168 are calculated as Crystal Ball assumptions in
cells F9:F13. Each assumption is a lognormal distribution with mean 1.0088
and standard deviation 0.0409, as determined by Crystal Ball’s distribution-fitting
feature. The lognormal distribution was chosen because of its adequate fit to the data
and its appealing property that it is bounded below by zero. This bound represents
well the limited liability of owning shares of SPY, from which an owner cannot lose
more than the total amount invested. The parameters of the fitted distribution tell us
that on average during the period February 1, 1993, through August 1, 2006, the ETF
had a monthly rate of return of 0.88 percent with a monthly standard deviation of
4.09 percent. These monthly figures annualize to a mean rate of return of 12 × 0.88 =
10.56 percent with a standard deviation of

√
12 × 4.09 = 14.17 percent.

Cell G13 is defined as a Crystal Ball forecast, and its chart is shown in
Figure 11.11. Using our methodology, a 95 percent certainty interval for the price
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FIGURE 11.10 Crystal Ball model for forecasting
with a multiplicative model the January 2, 2007,
adjusted closing value of SPY. Note that rows 15
through 168 are hidden.

FIGURE 11.11 Crystal Ball forecast for the 2-Jan-07 adjusted closing
value of SPY, based on the file SPY.xls. The actual closing value of
SPY on 3-Jan-07 was 141.37. Note that the new York Stock
Exchange was closed on 2-Jan-07 in observance of a national day of
mourning for the death of former U. S. president Gerald R. Ford.
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is from $111.02 to $158.17. Because we used the lognormal distribution for gross
returns, it is possible to have come up with this forecast analytically. However,
we saw in Chapter 9 how the multiplicative model is used along with annual
withdrawals to come up with a retirement planning model for which a forecast
cannot easily be obtained analytically. Ibbotson Associates (2006) describes wealth
forecasting with Monte Carlo simulation and provides historical data from which
to estimate the necessary parameters.

The multiplicative model can also be used with assets whose returns are
correlated within the same time period, but are serially uncorrelated. Figure 11.12
is a model for three ETFs based on data for the period November 1, 2002, through
August 1, 2006, obtained from finance.yahoo.com. The adjusted closing price data
are in cells B8:D53 (not shown in Figure 11.12), and were used to calculate gross
returns in cells E8:G52. From these gross returns the lognormal distributions with
means, standard deviations, and correlations indicated in cells I15:L22 were fit
using Crystal Ball’s Batch Fit tool. Again, see Chapter 9 for an example of how the
multiplicative model was used for retirement planning.

FIGURE 11.12 Crystal Ball model for forecasting with
a multiplicative model the January 2, 2007, adjusted
closing values of SPY, ADRA, and ADRU. The Crystal
Ball assumptions in cells J9:L13 have means and
standard deviations shown in cells I15:L17, and cross
correlations shown in cells I19:L22. Cells M13:O13
are Crystal Ball forecasts.
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GEOMETRIC BROWNIAN MOTION MODEL

A special type of multiplicative random walk process is the geometric Brownian
motion (GBM) process, which is used widely for simulating stock prices. It is also
called exponentiated Brownian motion, and indeed to simulate GBM processes
we generate values from a Brownian motion process and then exponentiate them.
Brownian motion takes its name from botanist Robert Brown, who observed in
1827 that pollen particles floating in water under a microscope exhibited a ‘‘jittery’’
motion even though they were inanimate. Work by Albert Einstein and others in the
early 1900s associated the normal distribution with the jittery movements observed
by Brown.

In his 1900 doctoral thesis, Louis Bachelier described the movement of stock
prices with what we now call Brownian motion in order to find the value of options.
In the 1950s, economist Paul Samuelson rediscovered Bachelier’s thesis and went on
to popularize the use of GBM as a model of stock prices and other financial assets.
See Wilmott (2000) for a good, not-too-technical explanation of how GBM can be
developed from tossing coins.

Whereas it is possible for Brownian motion to take on negative values, GBM is
always positive because exponentiation always results in positive values. This is a
desirable feature because the limited liability of stock ownership implies that prices
cannot be negative. Also, it turns out that for GBM it is the percentage changes
that are IID rather than the absolute changes as in the additive random walk. This
implies that the stochastic percentage return is independent of the stock’s price level
for GBM. This is an appealing feature. If an investor desires a 10 percent return on
her investment, then with all else equal she will not care whether the 10 percent is
earned from holding 3,000 shares of General Electric purchased for $30 per share
or one share of Berkshire Hathaway Inc. purchased for $90,000.

The non-negativity of the prices it generates, the independence of the percentage
changes, and the relative simplicity and good empirical fit all account for the
popularity of GBM for simulating stock prices. To learn more about the derivation
of GBM, see Duffie (1996). To read more about its development and use in finance,
see Rubinstein (2006).

Generating Stock Prices with GBM

To simulate stock prices using the GBM model, we generate independent replications
of the stock price at time t + δ, from the formula

St+δ = Ste(µ−σ2/2)δ+σ
√

δZ, (11.5)

where St is the stock price at time t, µ is the rate of return parameter stated on an
annual basis, σ is the volatility parameter stated on an annual basis, δ is the time
step (in years), and Z is a standard normal random variate. The parameter σ is also
known simply as the volatility of the stock price, and is an important quantity in
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FIGURE 11.13 Crystal Ball model for forecasting SPY
prices with GBM.

modeling financial time series. Some authors refer to µ simply as the rate of return,
but its interpretation takes some care as explained below.

Because ln(St+δ) is normally distributed, stock prices generated with GBM follow
a lognormal distribution. Figure 11.13 shows a model used to generate SPY prices
with GBM having µ = 9.49 percent and σ = 14.04 percent in cells G12 and G13,
respectively. A forecast chart for the price of SPY on 2-JAN-07, is shown in
Figure 11.14. We arrived at this price by generating prices in five steps of one month
(δ = 1/12), but could have obtained similar results with just one step of five months
(δ = 5/12) in Expression 11.5. The next section explains how the values of the
parameters µ and σ were selected.

Estimating GBM Parameters

Given a time series of stock prices, S0, S1, S2, . . . , Sn observed at equally spaced time
periods with interval δ (stated in years), we can estimate the values of µ and σ as
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FIGURE 11.14 Forecast chart for SPY price on January 2, 2007. A
lognormal density function is superimposed on the histogram.

FIGURE 11.15 Correlated GBM. Cells D4:E103 are
assumptions. Cells B103 and C103 are forecasts.

was done in SPYwithGBM.xls. Define Ri as the gross return per period and ri as the
continuously compounded rate of return per period on the stock. To estimate µ and
σ , first find

Ri = Si/Si−1 and ri = ln(Ri) for i = 1, 2, . . . , n.
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Using the standard formulas for sample mean and standard deviation, compute

r = 1
n

n∑

i=1

ri and sr =
√√√√ 1

n − 1

n∑

i=1

(ri − r).

Then the GBM parameters are estimated as

µ̂ = r
δ

+ s2
r

2δ
and σ̂ = sr√

δ

Note the difference between the GBM rate of return parameter µ and the
expected annual return on the stock. Suppose that stock price ST is generated by a
GBM process with parameters µ and σ , starting at price St, where T > t and both
are stated in years. Then ST is lognormally distributed with mean and variance

E(ST) = Steµ(T−t)

Var(ST) = S2
t e2µ(T−t)(eσ2(T−t) − 1)

For the SPY example, the expected mean and variance are 132.35 and 144.42,
respectively. The sample mean and variance of the forecast in cell C178 are 134.54
and 149.49, respectively. Furthermore, let r be the continuously compounded rate
of return stated on an annual basis from time t to T, that is, ST = Ster(T−t). Then r is
normally distributed with mean and variance

E(r) = µ − σ 2

2

Var(r) = σ 2

(T − t)

This is verified by the simulation results in SPYwithGBM.xls.
There are other methods for estimating volatility that use more information,

such as the daily high and low prices as well as the closing prices. See Wilmott
(2000) and the references therein for more information.

Generating Correlated Stock Prices

Figure 11.15 shows part of a Crystal Ball model for generating correlated geometric
Brownian motion in CorrelatedGBM.xls. This model lets you specify parameters
for means, standard deviations, and correlation for a market return and a stock. It
also calculates sample statistics for means, standard deviations, and correlation for a
market return and a stock, as well as showing time-series plots of stock and market
prices and a scatterplot of returns.
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MEAN-REVERTING MODEL

The mean-reverting model is used for modelling commodity prices, foreign exchange
rates, interest rates and other financial time series. Unlike the random walk with
drift model, which increases (or decreases) on average over time, the mean-reverting
model has the characteristic that its level tends to fluctuate around the mean value,
µ. One type of mean-reverting model is the autoregressive model, which takes
advantage of the autocorrelation in a time series to predict future values from past
values of the series.

AR(1) Process

An autoregressive (AR) model of order 1, known as an AR(1) model, is

Yt = φ0 + φ1Yt−1 + at, (11.6)

where at is a white noise series with mean zero and variance σ 2
a . Expression 11.6 is

in the same form as a simple regression model, so we can use Excel’s Data Analysis
tool to find estimates of the parameters, φ0, φ1, and σ 2

a , then use these estimates to
simulate future values of the time series.

For example, the model in Figure 11.16 shows the market yield on 10-year
U.S. Treasury bonds for 2005. In order to use Excel’s regression capabilities, the
data in cells B4:B252 were copied and pasted to cells C5:C253. The values in
column C are then called the Lag1 values simply because for each value of the series
in rows 5 through 253 of column B, the previous value of the series is in the same
row of column C.

To estimate the parameters of the AR(1) model, mouse to Tools > Data Analysis
. . . > Regression in Excel and you will get the dialog window shown in

Figure 11.17. By specifying B5:B253 as the Y Range and C5:C253 as the X Range,
and checking the box next to Residuals, we generated a New Worksheet Ply named
‘‘AR(1)’’ containing the output shown in Figures 11.18 and 11.19.

To simulate future values of the time series, we use the model

Yt = 0.132 + 0.969Yt−1 + et,

where et is Normal with mean zero and standard deviation 0.045. The values
0.132, 0.969, and 0.045 are taken from cells B17, B18, and B7, respectively
in Figure 11.18. To check whether the residuals appear to be white noise, their
autocorrelation is found in cell D25 to be 0.011, which gives a rule of thumb value
of 0.181 (much less than 2 in absolute value) in cell E25. Furthermore, using Crystal
Ball’s Distribution Fitting feature, we found that a normal(0,0.045) distribution fit
the residuals well.

For the AR(1) model specified in Expression 11.6, the mean is µ = φ0/(1 −
φ1). Therefore, the mean to which our simulated data will revert is estimated as
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FIGURE 11.16 Market yield on 10-year U.S. Treasury bonds for
2005 obtained from www.federalreserve.gov/datadownload/ and
their lag-1 values. Note that rows 7 through 249 are hidden.

0.132/(1 − 0.969) = 4.31. Although we can use this model to simulate future values
for an indefinite period, it may be best to reestimate the model parameters as new
data become available.

AR(p) Process

In the previous example, because the residuals in Figure 11.19 appeared to come
from a white noise process, we concluded that an AR(1) process was suitable for
simulating future values. In this section, we consider what to do when the residuals
from an AR(1) model do not appear to be from a white noise process.
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FIGURE 11.17 Excel regression fitting an AR(1) model to the data
dialog window used in Figure 11.16.

FIGURE 11.18 Excel regression output from fitting an AR(1) model to the data
in Figure 11.16.
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FIGURE 11.19 Residuals from fitting an AR(1) model to the data in Figure 11.16. Note that rows 30
through 271 are hidden.

Mean-reverting processes can be simulated as AR(p) processes, where the order
p is identified from the data. The model for an AR(p) process is

Yt = φ0 + φ1Yt−1 + . . . + φpYt−p + at,

where at is a white noise series with mean zero and variance σ 2
a as in the specification

of an AR(1) model. Observations from an AR(p) model will revert to the mean level,

µ = φ0/(1 − φ1 − . . . − φp).

One strategy for using an AR(p) model is to find the smallest order p such
that the residuals from the AR(p) autoregression have no statistically significant
first-order autocorrelation. This assumes that if the first-order autocorrelation is
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FIGURE 11.20 Data and lagged values contained on the ‘‘Data’’ worksheet of the
file OneYearTreasuryYieldsData.xls. Note that rows 21 through 206 are hidden.

zero, then higher orders will be zero also. While not always a good assumption, this
method is useful for generating potential future values from many time series used
in financial models. For information about performing more thorough time series
analyses of financial time series for inferential purposes, see Tsay (2002).

An example of identifying and using an AR(p) model is shown in the file
OneYearTreasuryYields.xls for 1-Year Treasury Constant Maturity Rate data
shown in cells B16:B207 of the ‘‘Data’’ worksheet in the Excel file shown in
Figure 11.20. The LAG1, LAG2, and LAG3 values were placed in Columns B, C,
and D, respectively, on the ‘‘Data’’ worksheet. Worksheets ‘‘AR(1)’’, ‘‘AR(2)’’, and
‘‘AR(3)’’ show the output from fitting AR models of order 1, 2, and 3 to the time
series values. Based on this output, we would select an AR(2) model for simulating
potential future values. Figure 11.21 shows some of the output on the ‘‘AR(2)’’
worksheet.

We reach this conclusion because the residuals from the AR(1) model have
autocorrelation of 0.462, which is large enough by our rule of thumb (because
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FIGURE 11.21 Worksheet ‘‘AR(2)’’ of the file OneYearTreasuryYieldsData.xls.

6.35 > 2) to conclude that they are not uncorrelated. However, the residuals from
the AR(2) model have autocorrelation of 0.004 (see cell C22 in Figure 11.21), which
is small enough by the rule of thumb value (0.053 in cell D22) to conclude that
they come from a white noise process. We reach the same conclusion by noting that
the estimate of φ3 in the AR(3) model, 0.010, is not statistically different from zero
because its P-value in the Excel output is 0.891, which is much greater than the
usual comparison value of 0.05.

In cells B208:B213 of the ‘‘Data’’ worksheet, we see how to use the mean-
reverting AR(2) model to simulate data for the first six months of 2006 with the
equation

Yt = 0.075 + 1.442Yt−1 − 0.461Yt−2 + et

where et is Normal with mean zero and standard deviation 0.200.
This chapter covered some of the basic models used in financial modeling and

risk analysis. For more advanced models used for specialized purposes, see Tsay
(2002), Fan and Yao (2003), or McNeil, Frey, and Embrechts (2005).



CHAPTER 12
Financial Options

A financial option is a security that grants its owner the right, but not the obligation,
to trade another financial security at specified times in the future for an agreed

amount. The financial security that can be traded in the future is called the underlying
asset, or simply the underlying. An option is an example of a derivative security,
so named because its value is derived from that of the underlying. The problem of
placing a value on an option is made difficult by the asymmetric payoff that arises
from the option owner’s right to trade the underlying in the future if doing so is
favorable, but to avoid trading when doing so is unfavorable.

Options allow for hedging against one-sided risk. However, a prerequisite for
efficient management of risk is that these derivative securities are priced correctly
when they are traded. Nobel laureates Fischer Black, Robert Merton, and Myron
Scholes developed in the early 1970s a method to price specific types of options
exactly, but their method does not produce exact prices for all types of options. In
practice, Monte Carlo simulation is often used to price derivative securities. This
chapter shows how to use Crystal Ball for option pricing.

The optionality leads to a nonlinear payoff that is convolved with the log-
normally distributed stock price to result in a probability distribution for option
value that is difficult for many analysts to visualize without Crystal Ball. The
payoff diagrams familiar to options traders give the range and level of option
value as a function of stock price but don’t offer insights into the probabili-
ties associated with payoffs. However, Crystal Ball forecasts do this readily. The
next section provides brief background material on financial options. For more
information, consult the books by Hull (1997), McDonald (2006), or Wilmott
(1998, 2000).

TYPES OF OPTIONS

Denote the price of the underlying asset by St, for 0 ≤ t ≤ T, where T is the
expiration date of the option. The agreed amount for which the underlying is traded
when the option expires is called the strike price, which is denoted by K. There are
many different types of options. Some basic types are listed below.
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Call. A call option gives its owner the right to purchase the underlying for the
strike price on the expiration date. The payoff for a call option with strike
price K when it is exercised on date T is max (ST − K, 0).

Put. A put option gives its owner the right to sell the underlying for the strike
price on the expiration date. The payoff for a put option with strike price K
when it is exercised on date T is max (K − ST, 0).

European. A European option allows the owner to exercise it only at the
termination date, T. Thus, the owner cannot influence the future cash flows
from a European option with any decision made after purchase.

American. An American option allows the owner to exercise at any time on
or before the termination date, T. Thus, the owner of an American call (or
put) option can influence the future cash flows with a decision made after
purchase by exercising the option when the price of the underlying is high
(or low) enough to compel the owner to do so.

Exotic. The payoffs for exotic options depend on more than just the price of
the underlying at exercise. Some examples of exotics are: Asian options,
which pay the difference between the strike and the average price of the
underlying over a specified period; up-and-in barrier options, which pay
the difference between the strike and spot prices at exercise only if the
price of the underlying has exceeded some prespecified barrier level; and
down-and-out barrier options, which pay the difference between the strike
and spot prices at exercise only if the price of the underlying has not gone
below some prespecified barrier level.

New types of options appear frequently. Because they are designed to cover
individual circumstances, analytic methods to price new derivative securities are not
always available when the securities are developed. However, it is possible to obtain
good estimates of the value of most any type of option using Crystal Ball and the
concept of risk-neutral pricing.

RISK-NEUTRAL PRICING AND THE BLACK-SCHOLES MODEL

Arbitrage is the purchase of securities on one market for immediate resale on another
in order to profit from a price discrepancy. Because the sale of the security in the
higher-price market finances the purchase of the security in the lower-price market,
an arbitrage opportunity requires no investment capital. An arbitrage opportunity is
said to exist when a combination of trades is available that requires no investment
capital, cannot lose money, and has a positive probability of making money for the
arbitrageur.

In an efficient market, arbitrage opportunities cannot last for long. As arbi-
trageurs buy securities in the market with the lower price, the forces of supply and
demand cause the price to rise in that market. Similarly, when the arbitrageurs sell
the securities in the market with the higher price, the forces of supply and demand
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cause the price to fall in that market. The combination of the profit motive and
nearly instantaneous trading ensures that prices in the two markets will converge
quickly if arbitrage opportunities exist.

Using the assumption of no arbitrage, financial economists have shown that the
price of a derivative security can be found as the expected value of its discounted
payouts when the expected value is taken with respect to a transformation of the
original probability measure called the equivalent martingale measure or the risk-
neutral measure. See Duffie (1996), Hull (1997), McDonald (2006), or Wilmott
(1998, 2000) for more about risk-neutral pricing.

The price of a fairly valued European put option is the expected present value
of the payoff E

[
e−rTmax (K − ST, 0)

]
, where the expectation is taken under the risk-

neutral measure. To compute this expectation, Black and Scholes (1973) modeled the
stochastic process generating the price of a non-dividend-paying stock as geometric
Brownian motion (GBM).

The Black-Scholes price for a European call option on a non-dividend-paying
stock trading at time t is

Ct(St, T − t) = StN(d1) − Ke−r(T−t)N(d2), (12.1)

where

d1 = log(St/K) + (
r + 1

2σ 2
)

(T − t)

σ
√

T − t
, (12.2)

d2 = log(S/K) + (
r − 1

2σ 2
)

(T − t)

σ
√

T − t
= d1 − σ

√
T − t, (12.3)

N(di) is the cumulative distribution value for a standard normal random variable
with value di, K is the strike price, r is the risk-free rate of interest, and T is the time
of expiration.

The Black-Scholes solution for a European put option on a non-dividend-paying
stock trading at time t is:

Pt(St, T − t) = −StN(−d1) + Ke−r(T−t)N(−d2), (12.4)

where d1 and d2 are given by expressions (12.2) and (12.3) above.
Note that the variables appearing in the Black-Scholes equations are the current

stock price, St; stock price volatility, σ ; strike price, K; time of expiration, T; and
the risk-free rate of interest, r; all of which are independent of individual risk
preferences. This allows for the assumption that all investors are risk neutral, which
leads to the Black-Scholes solutions above. However, these solutions are valid in all
worlds, not just those where investors are risk neutral.
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Option Pricing with Crystal Ball

In the Black-Scholes worldview, a fair value for an option is the present value of
the option payoff at expiration under a risk-neutral random walk for the underlying
asset prices. Therefore, the general approach to using simulation to find the price of
the option is straightforward:

1. Using the risk-free measure, simulate sample paths of the underlying state
variables (e.g., underlying asset prices and interest rates) over the relevant time
horizon.

2. Evaluate the discounted cash flows of a security on each sample path, as
determined by the structure of the security in question.

3. Average the discounted cash flows over sample paths.

In effect, this method computes an estimate of a multidimensional integral that
yields the expected value of the discounted payouts over the space of sample paths.
The increase in complexity of derivative securities has led to a need to evaluate
high-dimensional integrals. Monte Carlo simulation is attractive relative to other
numerical techniques because it is flexible, easy to implement and modify, and the
error convergence rate is independent of the dimension of the problem.

To simulate stock prices using the assumptions behind the Black-Scholes model,
generate independent replications of the stock price at time t + δ from the formula

S(i)
t+δ = St exp

(
(r − σ 2/2)δ + σ

√
δZ(i)

)
, (12.5)

for i = 1, . . . , n, where St is the stock price at time t, r is the riskless interest rate, σ

is the stock’s volatility, and Z(i) is a standard normal random variate.
The Excel files EuroCall.xls in Figure 12.1 and EuroPut.xls in Figure 12.2 con-

tain simulation models for pricing European Call and Put options on a stock with
current price S0 =$100 and annual volatility σ = 40%. The options have strike price
K =$100, and six months until expiration, in a world with risk-free rate r = 5%.
Of course, these are securities for which the Black-Scholes formulas (12.1) and
(12.4) provide an exact answer, so there is no need to use simulation to price them.
However, European options serve to help us see how well the Monte Carlo pricing
approach works—since we know the exact solution, it becomes possible to check
the accuracy of our simulation results against the exact solution provided by Black-
Scholes. In the Excel file EuroCall.xls, the European call price estimated by simulation
with 100,000 iterations is $12.33 (with standard error 0.06), while the Black-Scholes
price is $12.39. In EuroPut.xls, the European put price estimated by simulation with
100,000 iterations is $9.92 (0.04), while the Black-Scholes price is also $9.92.

The increased availability of powerful computers and easy-to-use software has
enhanced the appeal of simulation to price derivatives. The main drawback of
Monte Carlo simulation is that a large number of replications may be required to
obtain precise results. Fortunately, computer speeds have increased greatly in the last
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FIGURE 12.1 Spreadsheet segment from model to simulate a
European call option.

FIGURE 12.2 Spreadsheet segment from model to simulate a
European put option.

30 years and software algorithms such as Crystal Ball’s Extreme Speed feature have
become more efficient. Furthermore, variance reduction techniques can be applied
to sharpen the inferences and reduce the number of replications required. Variance
reduction techniques are covered in Appendix C.

PORTFOLIO INSURANCE

In this section, we use Crystal Ball to simulate the combination of holding a put
option with the underlying asset. This limits the upside potential, but protects
against potential losses and so is a form of portfolio insurance. We will see how this
strategy lowers the risk and expected value from the levels obtained when holding
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FIGURE 12.3 Spreadsheet segment from model in
VFH.xls to simulate the return on holding a stock and a
put option.

the underlying asset by itself. Although this strategy lowers risk for any selected
underlying asset, it might induce a money manager to purchase a riskier underlying
with a higher expected return if it can be protected with a put.

Figure 12.3 shows a spreadsheet segment from the model in file VFH.xls used
for estimating the return on a portfolio composed on August 21, 2006, of one
share of the exchange-traded fund (ETF) tracking stock VFH and a put option on
VFH that expires on March 16, 2007. The holding period is calculated as 0.57
years in cell E13. VFH tracks the performance of the Morgan Stanley (MSCI) U.S.
Investable Market Financials benchmark index. This index consists of stocks of
large, medium-size, and small U.S. companies within the financial sector, which is
composed of companies involved in activities such as banking, mortgage finance,
consumer finance, specialized finance, investment banking and brokerage, asset
management and custody, corporate lending, insurance, financial investment, and
real estate. The drift and volatility parameters were estimated as 11.50 percent and
11.75 percent, respectively, from the monthly closing prices of VFH for the previous
31 months. Cell D21 has the rate of return earned if the stock alone was held from



176 FINANCIAL MODELING WITH CRYSTAL BALL AND EXCEL

FIGURE 12.4 Forecast charts from model in VFH.xls to simulate the
return on holding a stock and a put option.

August 21 through March 16, and cell D23 has the rate of return earned on the
portfolio of the stock and the put option held during the same period.

Figure 12.4 shows the forecast charts for cells D21 and D23, specified to have
the same scale on the horizontal axes. Note how the option to sell VFH for the
exercise price, if its price falls below that, limits the downside value of the portfolio
but not the upside. However, this protection comes at the cost of the price of the
option, so the mean percentage return on the portfolio of 4.07 percent is lower than



Financial Options 177

that on holding the stock alone, which is 6.71 percent. This is similar to buying
insurance coverage to protect against a loss, so the strategy of purchasing a put
along with stock is a form of portfolio insurance.

AMERICAN OPTION PRICING

Whereas a European option grants its holder the right, but not the obligation, to
buy or sell shares of a common stock for the exercise price, K, at expiration time T,
an American option grants its holder the right, but not the obligation, to buy or sell
shares of a common stock for the exercise price, K, at or before expiration time T.
The Black-Scholes expressions (12.1) and (12.4) are for European options and thus
yield approximations for the values of American call and put options. In practice,
numerical techniques are used to obtain closer approximations of options that can
be exercised at or before expiration time T.

The fair value of an American put option is the discounted expected value of
its future cash flows. The cash flows arise because the put can be exercised at the
next instant, dt, or the following instant, 2dt, if not previously exercised, . . . , ad
infinitum. In practice, American options are approximated by securities that can
be exercised at only a finite number of opportunities, k, before expiration at time
T. These types of financial instrument are called Bermudan options. By choosing k
large enough, the computed value of a Bermudan option will be practically equal to
the value of an American option.

Geske and Johnson (1984) develop a numerical approximation for the value
of an American option based on extrapolating values for Bermudan options having
small numbers (1, 2, and 3) of exercise opportunities. Their results are exact in
the limit as the number of exercise opportunities goes to infinity. Broadie and
Glasserman (1997) used simulation to price American options by generating two
estimators, one biased high and one biased low, both asymptotically unbiased and
converging to the true price. Avramidis and Hyden (1999) discuss ways to improve
the Broadie and Glasserman estimates. Longstaff and Schwartz (1998) provide an
alternate method for pricing American options.

The early exercise feature of American options makes their valuation more
difficult because the optimal exercise policy must be estimated as part of the
valuation. This free–boundary aspect of the pricing problem led some authors to
conclude that Monte Carlo simulation is not suitable for valuing American options
(for example, Hull 1997). However, we’ll see next how to use Crystal Ball and
OptQuest for this purpose.

The file BermuPut.xls contains an example of valuing an Bermudan put option
with initial stock price S0 = 40, risk-free rate r = 0.0488, time to expiration T =
0.5833 (seven months), volatility σ = 0.4, strike price K = 45, and six early-exercise
opportunities at Months 1 through 6. From Geske and Johnson (1984), the true
value of this option is $7.39.

The spreadsheet in Figure 12.5 illustrates a method to price this option using
Crystal Ball and OptQuest. This method uses OptQuest’s tabu search to identify an
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FIGURE 12.5 Spreadsheet segment from model to simulate
a Bermudan put option.

FIGURE 12.6 Forecast from model to simulate a Bermudan put
option. The values of the decision variables in cells E12:E17 were
selected by OptQuest.
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FIGURE 12.7 Constraints from model to simulate a Bermudan
put option.

optimal policy, then a final set of iterations to estimate the value of the option under
the identified policy. The estimated price for the option described above is shown in
Figure 12.6 as $7.42. The standard error of this estimate is $0.06.

Figure 12.7 shows the only constraints on the decision variables. Because the
longer the time left until expiration, the greater the chance of the stock price falling
below the exercise price, so the early-exercise boundary value should also be less
than the value at a later time. These constraints are imposed in Figure 12.7 by
requiring the bound at month t to be greater than or equal to the bound in the
previous month, t − 1, for t = 2, 3, 4, 5, 6.

EXOTIC OPTION PRICING

Exotic options are financial instruments having more complicated payoff structures
than ‘‘plain vanilla’’ puts and calls. As the term exotic is used to describe options in
the sense of unusual, there is not a well-accepted categorization of exotic options.
What are exotic options to one trader may be traded on a daily basis by another,
and therefore not unusual. For our purposes, we use the term to apply to any option
other than the European or American puts and calls we have described thus far.

There are far too many exotic options to list here, but the next three subsec-
tions show how to model some options that are representative of those you might
encounter.

Digital options
Digital options pay either a prespecified amount of an asset, or nothing at all. For
example, a European cash-or-nothing digital (also called a binary) call option pays
$1 if and only if the price of the underlying exceeds the strike price on the exercise
date. That is, the payoff is

$1 if ST > K,
0 otherwise.
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FIGURE 12.8 Spreadsheet segment from model in
AssetOrNothingCall.xls to simulate the return on an
asset-or-nothing call option.

A European asset-or-nothing digital call option pays one share of the underlying
asset if and only if the price of the underlying exceeds the strike price on the exercise
date. That is, the payoff is

ST if ST > K,
0 otherwise.

Figure 12.8 shows a model to value an asset-or-nothing call option with strike price
$105 expiring in one year. It can also be used to model a cash-or-nothing option
having payoff $1 by inserting into cell D11 the formula =IF(B12>K,1,0).

Barrier Options

On September 28, 1998, the New York Times reported that Sprint chairman
William T. Esrey stood to earn call options having a strike price of $47.94 for one
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FIGURE 12.9 Spreadsheet segment from model in
EsreyOptions.xls to simulate the return on an up-and-in barrier
call option.

million shares of Sprint stock if the stock price reached a barrier price of $95.875
sometime in the future. On September 30, 1998, Sprint’s stock price closed at
$72.00. The file EsreyOptions.xls in Figure 12.9 contains a model to estimate the
value of Mr. Esrey’s up-and-in barrier call options on December 31, 2000, based
on the historical drift and volatility of Sprint stock estimated from monthly closing
prices during the period January 31, 1996, through September 30, 1998, which was
a period of very dynamic growth in the telecommunications industry.

Asian Options

Figure 12.10 shows a model used to determine the price of an Asian average-price
call option for a stock with S0 = $40, K = $40, σ = 30%, r = 8%, and T = 0.25.
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FIGURE 12.10 Spreadsheet segment from model in AsianCall.xls to
simulate the return on an average-price call option.

The value of $1.98 (with a standard error of $0.03) is consistent with McDonald
(2006), who gets a price of $2.03 ($0.03).

Denote the price of the stock at time t as St. Then for this option, which pays
off on the arithmetic average of the monthly prices, the option price is found by
simulating the stock prices S1, S2, and S3, then taking the mean over all iterations of
the quantity

e−rTE (max [(S1 + S2 + S3)/3 − K, 0]) .

Analytic solutions exist for pricing Asian options that pay off on the geometric
average (see McDonald 2006). To price this as a geometric Asian option with Crystal
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Ball, simulate stock prices S1, S2, and S3, then take the mean over all iterations of
the quantity

e−rTE
(
max

[
3
√

S1S2S3) − K, 0
])

.

BULL SPREAD

Options traders often hold more than one option on the same stock. This is called
an option strategy. Figure 12.11 shows a model for a bull-spread strategy in which
a trader buys a call with strike price K = $130 and writes a call with strike price
K = $140. Both calls expire on December 15, 2006.

Figure 12.11 shows a mean return of −5.96 percent on the bull spread if the
assumed µ and σ parameters of the stock are 5 percent and 11 percent, respectively.

FIGURE 12.11 Spreadsheet segment from model in
BullSpread.xls to simulate the return on a bull spread.
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FIGURE 12.12 Decision table from model in
BullSpread.xls to simulate the return on a bull spread
for several values of µ and σ .

Because different traders have different expectations for µ and σ , Figure 12.12
shows estimates of the bull-spread strategy’s mean return as a function of different
levels of µ and σ . In general, the mean return increases as a function of both
parameters.

PRINCIPAL-PROTECTED INSTRUMENT

While not strictly an option, the analysis of principal-protected instruments (PPIs)
is included here to demonstrate how to model another derivative security recently
introduced in the marketplace.

PPIs are sold to risk-averse investors who wish to contractually guarantee that
they will not lose any of their initial investment, but also wish to participate to
some extent in upward movements of the price of a financial investment. They are
hybrid securities that combine a fixed income instrument with a series of derivative
components. PPIs have been engineered for assets such as equities, currencies, interest
rates or commodities.

Figure 12.13 shows a model for valuing a PPI with the following characteristics:
For every quarter of its five-year life, the PPI quarterly return tracks the quarterly
return on the underlying asset XYZ. However, if the quarterly rate of return on
XYZ exceeds 15 percent for any quarter, the PPI return for that quarter is capped
at 15%. At the end of five years, the PPI will deliver a final amount determined by
the 20 quarterly returns specified in the contract.
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FIGURE 12.13 Model to compute distribution of rates of
return on a principal-protected instrument.

Denote the initial investment as I, the final value of XYZ as Fxyz, the final value
of PPI as Fppi, and the quarterly rate of return on XYZ stock as Ri for i = 1, 2, . . . , 20.
The final value of XYZ is

Fxyz = I
20∏

i=1

(1 + Ri),

while the final value of PPI is

Fppi = max

[
I

20∏

i=1

min(1 + Ri, 1.15), I

]
.
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FIGURE 12.14 Distribution of the difference in annualized rates of
return on a PPI and the underlying asset.

The simulation model in Figure 12.13 generates quarterly values for asset XYZ using
geometric Brownian motion with parameters µ = 12 percent and σ = 30 percent.
The ‘‘Report’’ worksheet shows the final values and annualized rates of return on
holding the PPI and on XYZ. Figure 12.14 shows the difference in annualized rates
of return when holding the PPI and XYZ alone. The risk-averse investor pays 2.87
percent on average to guarantee that the principal is not lost. Figure 12.14 also
shows that the probability is about 70 percent that the investor would realize a
greater return by holding XYZ alone than by holding the PPI.



CHAPTER 13
Real Options

T his chapter describes a recent topic in finance called real options analysis (ROA)
and shows how Crystal Ball and OptQuest can help you determine the value of

real options. As we have seen, a financial option is the right, but not the obligation,
to buy (or sell) an asset at some point within a predetermined period of time for
a predetermined price. ROA is used as an alternate methodology for evaluating
capital investment decisions involving a high degree of managerial flexibility, such
as research and development projects or new product decisions. Unlike the simple
net present value (NPV) method used in traditional finance theory, ROA treats an
investment opportunity as either a single option or a compound option (a sequence of
options). The traditional NPV method does not value managerial flexibility correctly
when it relies on the false assumption that the investment is either irreversible or
that it cannot be delayed.

In this chapter, we will see the similarity between financial and real options,
then discuss applications of ROA and some analytical methods that have been
used with real options. The real option valuation (ROV) tool described in the final
sections combines the use of Crystal Ball and OptQuest to determine the value of
opportunities that contain real options.

FINANCIAL OPTIONS AND REAL OPTIONS

With a financial option the initial investment in an option contract buys the
potential opportunity to enjoy positive cash flow when future spot price changes of
the underlying financial asset favor doing so, but does not carry the obligation to
realize negative cash flow if unfavorable conditions prevail. For example, the holder
of a call option is not obligated to purchase the underlying at the strike price if its
spot price is below the strike price on the expiration date, and the holder of a put
option is not obligated to sell the underlying at the strike price if the spot price is
above the strike price on the expiration date. This flexibility to limit one’s losses
adds value to a financial option contract when there is uncertainty about the future
spot price of the underlying.

Contrast the flexibility of an option contract to a futures contract, which specifies
a price and a future date for a transaction that both parties are obligated to complete.

187
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For example, if you are to be paid a fixed amount of Indian rupees (INR) one year
from now, but you want to lock in the amount of American dollars (USD) you will
gain at that time, you can enter into a futures contract (at some cost to you) that
specifies an exchange rate for the amount of USD to receive in exchange for INR one
year from now. Once you are locked into the exchange rate, you are shielded from
fluctuations in the USD/INR spot exchange rate. If the spot exchange rate is lower
next year than the rate you locked in, you will end up with more USD than you
would otherwise receive at the spot exchange rate, but if the spot exchange rate is
higher next year, you will end up with fewer USD than you would otherwise. With
a futures contract, you bear the risk of losing more than just the cost of the contract
if the USD/INR exchange rate rises—you also lose the opportunity to benefit from
the higher exchange rate.

With a rupee put option contract, you can simply choose not to complete the
transaction if the spot exchange rate exceeds the strike price. You will lose the cost
of entering into the option contract, but you will benefit from selling your INR at
the higher spot exchange rate. With all else equal, an option contract is worth more
than a futures contract because an option contract offers more flexibility than a
futures contract. Chapter 12 describes how to use Crystal Ball to determine option
values. For more information about options and futures contracts, see McDonald
(2006) or Wilmott (2000).

With a real option—an option on a real asset—the initial investment related
to the asset buys the potential opportunity to continue, expand, or abandon the
use of the asset when it is favorable to do so, but does not carry the obligation
to realize some losses when unfavorable conditions prevail. Because efforts such
as testing potential oil-drilling sites can be viewed as learning options, financial
models similar to those used for determining financial option values can be used to
determine the value of the real options embedded in the opportunity to test for oil
at a particular site.

To learn more about the theory underlying real options, see the texts by Dixit
and Pindyck (1994), or Trigeorgis (1996), which summarize much of the early work
done in applying financial options valuation methodology to real options problems.
The next section describes how real options have been applied in various contexts.

APPLICATIONS OF ROA

For a good, nontechnical introduction to real options analysis, see Copeland and
Keenan (1998a, 1998b), who categorize real options into the three broad categories
described below.

1. Investment/growth options. These include (1) scale-up options, where early
entrants can scale up later through sequential investments as their market grows;
(2) switch-up options, where speedy commitments to the first generation of a
product or technology give managers a preferential position to switch to the
next generation of the product or technology; and (3) scope-up options, where
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investments in proprietary assets in one industry enables managers to enter
another industry with a competitive cost advantage.
For example, a venture capitalist (VC) who invests in stages uses ROA of
the growth option to value a start-up company. By structuring the contract
properly, the VC retains exclusive rights to a portion of the profits from the
start-up venture. However, if the VC decides later not to invest further, any loss
is limited to the amount already invested. The VC is not obligated to pay the
start-up’s debts if the venture fails.

2. Deferral/learning options. Also called study/start options, these are oppor-
tunities to delay investment until more information or skill is acquired. For
example, an oil company uses ROA to evaluate exploration investment strate-
gies, in which drilling sites undergo various types of testing before the decision
whether or not to drill is made. A pharmaceutical firm uses ROA to evaluate
drug development projects, in which investments are made in several phases of
experimentation with the drug compound before seeking regulatory approval
and going to market.

3. Disinvestment/shrinkage options. These include (1) scale-down options, where
new information that changes the expected payoffs can cause managers to shrink
or shut down a project before completion; (2) switch-down options, where
managers have the ability to switch to more cost-effective and flexible assets as
new information is obtained; and (3) scope-down options, where the scope of
operations is decreased or even ceased when managers see no further potential
in a business opportunity.
For example, a manufacturing firm uses ROA to evaluate three types of power
generators that use (1) natural gas, (2) fuel oil, or (3) both for fuel. The higher
cost of a dual-fuel generator may be offset by future savings obtained when the
cost per energy unit of natural gas is lower than fuel oil, or vice versa. ROA can
determine a value for the flexibility to use the cheaper fuel when the dual-fuel
generator is installed.

Myers (1984) is often credited with being the first to publish in the academic
literature the notion that Black and Scholes (1973) results could be applied to strate-
gic issues concerning real assets rather than just financial assets. In the practitioner
literature, Kester (1984) suggested that the discounted cash flow valuation methods
in use at that time ignored the value of important flexibilities inherent in many
investment projects and that methods of valuing this flexibility were needed. ROA is
most effective when competing projects have similar values obtained with the simple
NPV method.

One difficulty in applying ROA is that real asset investments are usually affected
by more than one source of uncertainty, whereas all of the uncertainty driving
financial options is characterized by the volatility in spot prices of the underlying
financial asset. As we saw in Chapter 12, the historical volatility of a financial asset
is readily obtained from publicly available market prices. Options with values driven
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by multiple sources of uncertainty are called rainbow options. Combinations of
rainbow and learning options often exist in practice.

Thinking about investment projects in option terms encourages managers to
decompose an investment into its component options and risks, which can lead
to valuable insights about sources of uncertainty and how uncertainty will resolve
over time (Brabazon 1999). Options thinking also encourages managers to consider
how to enhance the value of their investments by building in more flexibility where
possible. Bowman and Moskowitz (2001) suggest that ROA is useful because it
challenges the type of investment proposals that are submitted and encourages
managers to think proactively and creatively.

ROA has the potential to allow companies to examine programs of capital
expenditures as multi-year investments, rather than as individual projects (Copeland
2001). Such programs of investments are strategic and highly dependent on market
outcomes, which is just the decision climate under which Miller and Park (2002) find
ROA to be most useful. However, ROA and NPV are complementary techniques,
with NPV being suitable for basic replacement decisions.

Early work on real options valuation suggests that if the analogous real options
parameters can be estimated, any method used to value financial options can
potentially be used to value real options. Often though, many of the assumptions
must be relaxed to make the connection. Amram and Kulatilaka (1999), Copeland
and Antikarov (2001), and Mun (2002) provide guidelines for analyzing real options
with financial-option pricing techniques. The remainder of this section describes two
early techniques for ROA: the Black-Scholes method, and lattice methods.

Black-Scholes Method

The Black-Scholes method relies on the assumption that project values follow a
geometric Brownian motion (GBM) stochastic process. While useful in the abstract,
GBM is difficult to use in practical real options problems involving many sources
of uncertainty and interrelated decisions. In order to use this method, one must
somehow encapsulate the random effects of all the important real-world compli-
cations into one summary measure—the volatility parameter of the GBM process.
Relatively few managers have the background or inclination to estimate the values of
the volatility parameters that are necessary for using Black-Scholes formulas to value
complicated real options in industry. However, the Black-Scholes model is useful
for gaining insights into real options valuation and how projects can be managed to
increase their real option value.

Lattice Methods

Lattice methods also rely on the assumption that project values follow a GBM
stochastic process. While the equations used in lattice methods are perhaps easier
to grasp than those underlying Black-Scholes, lattice methods are simply a way
to approximate a GBM process and thus suffer from the same limitations as
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Black-Scholes—namely, that so many important real-world complications must be
encapsulated in the volatility parameter. Hence, many managers are uncomfortable
with the estimation of the volatility parameters necessary to use lattice methods for
ROA in industry. However, those trained in finance theory may well be comfortable
using this technique. Mun (2002) has developed software for evaluating real options
with lattice models that Decisioneering markets as the Real Options Analysis Toolkit.

BLACK-SCHOLES REAL OPTIONS INSIGHTS

The Black-Scholes model provides insights into the factors affecting the value of real
options and how managers can manage their opportunities to increase this value. To
see this, consider the Black-Scholes formula for a European call option on a stock
that pays dividends at the continuous rate δ:

C(S, K, σ , T, δ, r) = Se−δTN(d1) − Ke−rTN(d2), (13.1)

where

d1 = ln(S/K) + (r − δ + 1
2σ 2)T

σ
√

T
(13.2)

d2 = d1 − σ
√

T (13.3)

and N(x) is the cumulative normal distribution function, which is the probability
that a number drawn randomly from the standard normal distribution (i.e., a normal
distribution with mean 0 and variance 1) will be less than x.

The Black-Scholes formula for a European put option on a dividend-paying
stock is

P(S, K, σ , T, δ, r) = Ke−rTN(−d2) − Se−δTN(−d1), (13.4)

where N(x) is the cumulative normal distribution function, and d1 and d2 are given
by equations (13.2) and (13.3).

According to the Black-Scholes option-pricing models (13.1) and (13.4), options
derive their value from six main factors. These factors are most easily expressed in
terms of financial options, but the analogy to real options provides insights into the
factors associated with strategic investment decisions. The factors are:

Stock price, S. The value of the underlying stock on which an option is
purchased. This is the stock market’s estimate of the present value of all
future cash flows arising from ownership of the stock. Its analog in a
real options analysis is the present value of cash flows expected from the
investment opportunity under consideration. Some examples of the sources
of uncertainty that affect the present value of cash flows from investment
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are: market demand for products and services, labor supply and cost, or
materials supply and cost.

Exercise price, K. The predetermined price at which the option can be exer-
cised. Its real options analog is the present value of all the investment
costs that are expected over the lifetime of the investment opportunity. The
availability, timing, and price of real assets to be purchased all affect the
uncertainty in this parameter.

Volatility, σ . A measure of the unpredictability of stock price movements,
usually expressed as the standard deviation of the growth rate of the value
of future cash flows associated with the stock. Its real options analog is
a measure of uncertainty of the cash flows associated with the investment
opportunity. This uncertainty arises from volatility in market demand, labor
supply and cost, and materials supply and cost. The correlations between
these factors also affects the volatility parameter.

Time to expiration, T. The period during which the option can be exercised. Its
real options analog is the period during which the investment opportunity
is available. This period depends on the product life cycle, the firm’s
competitive advantages, and the contractual arrangements made by the
firm.

Dividends. Sums paid regularly to stockholders at a constant continuous rate,
δ. Dividends reduce a financial option payoff when the option is exercised
after a dividend payout, which reduces the stock value. Their real options
analogs are the expenses that drain away potential project value over the
duration of the option. The cost of waiting could be high if competitors
enter the market. Thus, the cost of waiting to invest might be reduced
by locking-in key customers, or lobbying for regulatory constraints when
possible to discourage competitors from exercising their options to enter the
market.

Interest rate, r. The yield on financial securities with the same maturity as
the duration of the option. The risk-free rate of interest is used in the
Black-Scholes model, but a different rate might be appropriate for an
alternate option valuation method.

According to the Black-Scholes model, increases in stock price, volatility, time
to expiration, and interest rates increase financial option values, while increases
in exercise prices and dividends reduce financial option values. These qualitative
relationships are generally true for real options as well. See Leslie and Michaels
(1997), who describe how to apply options thinking to strategic situations by using
the qualitative relationships as guidelines for managerial action.

However, real options have additional features that distinguish them from
the type of financial options for which the Black-Scholes model was derived. The
Black-Scholes model is an exact solution to a pricing problem that was simplified
to make it solvable. The main simplification is called the European feature of the
option, which means that the option is assumed to be exercisable at only a single
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time point in the future. Most financial and real options are said to have American
features, which means that those options can be exercised at any point in time
between their purchase and expiration. The valuation of American-style options is
more difficult than the valuation of European options.

In practice, the difficulty introduced by the American exercise feature can be
overcome partially by assuming a Bermudan feature, which means that an option
can exercise at one of several discrete points between purchase and expiration
(rather than continuously as with an American option). The Bermudan assumption
is consistent with ROA if the decisions to make investments will be implemented only
at discrete times (e.g., quarterly). The real options valuation (ROV) tool described
in the next section uses Crystal Ball and OptQuest to value real options in a manner
similar to the valuation of financial Bermudan options in Chapter 12. The ROV tool
analyzes real-options investment opportunities by modeling cash flows occurring
over a period of time, punctuated by key decisions to be made by management about
whether to make additional investments, continue with no further investment, or
abandon the investment opportunity.

ROV TOOL

The ROV tool is simply the use of Crystal Ball to add stochastic assumptions,
decision variables, and forecasts to a deterministic spreadsheet, then finding the
optimal values of the decision variables using OptQuest. Thus, describing how to
use the ROV tool serves as a summary of financial modeling and risk analysis with
Crystal Ball. See Charnes, et al. (2004) for a description of how the ROV tool was
applied in the telecommunications industry.

The tool is used by following the eight steps in Figure 13.1, which diagrams the
ROV modeling process. This process expands on the simulation modeling process
detailed in Chapter 3. Each step is explained next.

ROV Modeling Process

Step 1: Identify Options The first task in any ROV modeling effort is to identify the
options in the problem in such a way that they can be modeled with decision variables
in a spreadsheet. If this cannot be done, Crystal Ball cannot be used to help you make
a decision. However, because of the versatility and flexibility of spreadsheets, many
option problems can be modeled with Crystal Ball. Next, be sure you can quantify
the uncertainty in the model’s variables and any statistical relationships between
them. Again, if this cannot be done, then building a spreadsheet ROV model is not
possible. While these two tasks might seem obvious, making sure at the outset that
a Crystal Ball model can be used to help solve the problem is critical to the success
of any ROV project.

Step 2: Build or Revise Model Be sure to design your model so that it will help solve
the problem you’ve identified. Again, this sounds obvious, but some analysts get so
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Step 1
Identify Options

Step 8
Make Decision

Step 7
Run OptQuest

Step 2 
Build or Revise

Model

Step 3 
Add or Revise
Assumptions

Step 4
Run
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Step 6
Sensitivity
Analysis

Step 5
Analyze

Forecasts

FIGURE 13.1 ROV modeling process diagram.

caught up in the details of modeling that they lose sight of the big picture. Do not
let this happen to you.

Wherever possible, model the uncertain variables in the smallest component
for which you have historical data collected. For example, suppose monthly sales
revenue is a variable in your model. If you have data collected on both units
sold and monthly sales revenue, in general it will be better to make units sold
into a Crystal Ball assumption rather than monthly sales revenue. Revenue can be
calculated in the spreadsheet as units sold times price, and by breaking revenue into
its components, you have more flexibility by modeling the uncertainty in units sold
rather than monthly sales revenue if you decide later to investigate a change in price,
for example.

Another important point to keep in mind is to have each assumption included
only once in your model, and have any calculations that depend on the assumption’s
value make reference to that cell. Novices sometimes put the same probability
distribution in two or more cells in a model, thinking that as long as the same
distribution—say a uniform(4000,6000), for example—is used in two places it will
give the same value in both places during a simulation trial. However, including a
distribution in two places means that Crystal Ball will generate independent values in
each cell—for example, two different numbers drawn from the uniform(4000,6000)
distribution—and the model will not represent the real-life situation the novice is
trying to model.

You may also reach Step 2 in the process as the result of previous analyses.
In particular, sensitivity analysis (Step 6) sometimes leads to changes in the model.
This is both a natural and good thing to happen, because it usually means that the
insights you have gained are helping you to improve the model you are building.
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Some analysts build an initial model to work with for a while as a prototype,
then throw it out and begin anew once they have a better understanding of the
situation. Sometimes it is better to start over with a redesigned model than to
continue working with an inefficient design that you can’t bear to give up because
you’ve been working on it for so long. An alternate approach advocated by some
authors is to map out your spreadsheet on paper before you even open Excel. See
Powell and Baker (2007) for their take on this approach.

Step 3: Add or Revise Assumptions For novices, choosing a distribution and its
parameter values is usually the hardest part of simulation modeling. However,
choosing which variables to make into assumptions and which to leave as deter-
ministic can also be a challenge. Choosing the assumption variables is a matter of
using your best judgment, intuition, and any data that you have available to identify
those you think are most important. After you have run the simulation you can use
sensitivity analysis to measure the effect of each assumption on the forecast(s), and
change your initial choices later in the modeling process when appropriate.

The Crystal Ball tornado chart is used to measure the effect of changes in any
variable (including deterministic variables) on a selected forecast. If you are having
a difficult time deciding which input variables should be probabilistic, and which
should be deterministic, try using the tornado chart, which helps to identify the most
important variables in terms of impact on the forecasts.

If you have no idea of which distribution family to select from the distribution
gallery, consider using the triangular or uniform distributions. By default, the
parameters of these distributions will be set so that the mean of your assumption is
equal to the simple value in the cell when you click the Define Assumption icon. The
minimum and maximum values will be set by default to 10 percent below the mean,
and 10 percent above the mean, respectively. If no historical data are available, you
can ask a subject matter expert (e.g., an engineer, cost analyst, or project manager)
to help you choose the parameters of a triangular or uniform distribution. See the
descriptions of these distributions in Appendix A for more information about setting
the parameters.

If you are fortunate enough to have historical data available for a variable used
in your model, you can have Crystal Ball analyze the historical data to suggest a
distribution as described in Chapter 4. For some models, the nature of the process
or underlying physics of the situation will suggest a distribution. See Appendix A
for specific examples of when each distribution might be used.

Step 4: Run Crystal Ball Click on Run > Single Step in the top menu of Crystal Ball
to run just one iteration of the simulation. Look at the values of the assumptions
and forecasts to make sure they are realistic for your model. If they are not realistic
values (meaning that they represent a combination of values that could not occur in
real life), then you have an error somewhere in your spreadsheet model.

Verify that your assumptions have the correct parameters, and that the Excel
formulas are correct. Make any necessary changes, then use Single Step again to
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check your changes. Repeat this process until you are comfortable with the results you
get on each step. Once you have verified that your model is correct, make sure Crystal
Ball’s sensitivity analysis feature is turned on (click on Run > Run Preferences, then
click the Options button, put a check in the box next to Calculate Sensitivity, and
click OK). Run the simulation for an initial number of trials. Try using 10,000 trials if
you are using Extreme Speed (ES) mode. If you are unable to use ES mode because you
have a large, complicated model, try using at least 2,000 trials in Normal Speed mode.

Step 5: Analyze Forecasts Check the forecasts to see if they contain outcome values
that could occur in real life. Because the combined effects of the probabilistic
assumptions can be very large, don’t be surprised if the range of outcomes is very
wide. Click on Analyze > Extract Data. . . to extract the values generated by Crystal
Ball for the assumptions and the corresponding forecast values. Investigating the
extreme points in a forecast and the assumption values that led to them can yield
useful insights.

Step 6: Sensitivity Analysis Click on Run > Open Sensitivity Chart in the
top menu to bring up the Sensitivity Chart. The model’s assumptions are listed on
this chart from top to bottom in descending order of the magnitude of their effects
on the selected forecast. The magnitude of the effects is measured by the Spearman
rank correlation statistic (see Chapter 4). Use the sensitivity analysis information
to revise the assumptions (Step 3) or the model itself (Step 2). Begin with the top
assumption listed on the chart, and work your way down. For each assumption,
make sure you are satisfied that the distribution and its parameters represent the
situation adequately. Draw upon subject matter experts for guidance.

Step 7: Run OptQuest You might have to go through Steps 2–6 many times before
you are satisfied with the model. However, this will help you understand the problem
much better. Many analysts claim that at this point of the process they feel like they
know enough about the problem to make a decision just because they have studied it
so intensely to get this far. However, when you are comfortable with the results, and
have obtained buy-in from the others involved in the decision-making process, you
are ready to run OptQuest. Refer to Chapter 5 for the details of running OptQuest.

Step 8: Make Decision If the model has helped to completely solve the problem you
faced, congratulations! However, oftentimes the process of modeling leads to the
identification of other problems to solve. If so, begin the process again to solve the
new problem by returning to Step 1.

Value Added by Using ROV Tool

A major advantage of using Crystal Ball and OptQuest as the ROV tool is that
it can be applied to a large number of existing spreadsheet models. These existing
models serve as ‘‘calculation engines’’ that are used by Crystal Ball to transform the
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stochastic inputs into random outputs for specified values of the decision variables.
An analyst comfortable with the ROV tool can use it with existing spreadsheet
models without necessarily having to understand all of the minute details of the
calculation engine. This makes the tool highly reusable, as it only requires the
analyst to be able to link the top-level worksheet to the calculation engine in existing
spreadsheets.

In Figure 13.2, the calculation engine is represented by the existing spreadsheets
depicted on the right side. The calculations that go into the determination of NPV
are usually very complex and can involve links to many of the worksheets composing
the Excel model. Some high-level knowledge of the business case represented by the
calculation engine is required to make the link to the top-level worksheet. However,
the ROV tool can be used with spreadsheets built by others if you understand how
the decision variables and stochastic assumptions are involved in the calculation
of NPV. The function g(d1, d2, . . . , dk; a1, a2, . . . , an) in Figure 13.2 represents the
result of all the calculations taking place in the business case that lead to a value
of NPV for the decision variable values d1, d2, . . . , dk and the assumption values
a1, a2, . . . , an. If you understand the calculation of the function g(·) well enough to
know how d1, d2, . . . , dk and a1, a2, . . . , an affect the calculation of NPV, then you
can use the ROV tool independently of the analysis leading to the construction of
the calculation engine. This feature allows the tool to be used with any existing or
future financial worksheets.

Decision Variables
d1, d2, dk

ROV Tool

Stochastic Assumptions
a1, a2, ..., an

Random Outputs
e.g., NPV

OptQuest finds the set of decision
variable values {d1, d2, ..., dk}

that maximize
E[g(d1, d2, ..., dk; a1, a2, ..., an)]

NPV = g(d1, d2, ..., dk ; a1, a2, ..., an)

Existing Spreadsheets

Company
Business Case

NPV Calculations

FIGURE 13.2 Depiction of links between the ROV tool and existing NPV calculations in your
company’s business cases. The function g(d1, d2, . . . , dk; a1, a2, . . . , an) represents the result of all the
calculations taking place in the business case that lead to a value of NPV for the decision variable values
d1, d2, . . . , dk and the assumption values a1, a2, . . . , an.
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Because the ROV tool is independent of the calculation engine, it is scalable
to virtually any size desired. The only limits on the size of the model are those
imposed by Microsoft Excel. Crystal Ball and OptQuest can handle a number of
decision variables that is unlimited for most practical purposes. Note that the current
version (available in 2006) of Extreme Speed mode takes longer to initialize when
the business case is composed of many spreadsheets. For some complicated models,
this initialization can take so long that you may be better off running Crystal Ball in
Normal Speed mode.

For long-term projects, a company comprising many divisions may find that
sharing the ROV tool across divisions brings benefits in terms of better communi-
cation and understanding among division managers. In particular, the benefits of
using the ROV tool to monitor progress in a cross-divisional project include:

■ The spreadsheets become living documents that are updated continually to reflect
current assumptions and the prevailing business environment. If many divisions
understand and share the same model, discussions between divisions can be far
more productive than they otherwise might be. By discussing the assumptions
underlying a common model, disagreements can focus on specific assumptions
in the model. This is more productive than discussions that occur sometimes
in which the discussants argue about different underlying assumptions without
realizing that they are doing so.

■ The tool documents all assumptions to ensure consistency between decisions. As
some projects take years to develop, changing conditions in the business climate
can cause the company-wide assumptions about the conditions affecting future
cash flow to change considerably over time. The ROV tool helps to document
the changes in these assumptions so that everyone stays ‘‘on the same page.’’

■ The modeling process itself leads to greater understanding. By decomposing the
project into its components and the relationships between them, managers see
the problem from many different aspects, which helps to gain understanding.
Yet when the model is run in Steps 4 or 7 in Figure 13.2, the big picture will
also be easily seen.

■ The tool enables risk analysis of outcomes. As discussed in Chapter 7, by
generating distributions of present value rather than a point estimate, managers
gain a better idea of the riskiness of the projects they manage. Further, the
distributions allow for calculation of VaR or CVaR, as described in Chapter 10,
or other measures of risk as desired in specific situations.

■ Crystal Ball enables sensitivity analysis of inputs. Sensitivity analysis can be
accomplished in several ways, including the use of the sensitivity chart to see
how each stochastic assumption affects the forecast(s), as well as an analysis of
how the changes in the assumed parameters of the model will affect the results.
This helps the managers to understand the problem better.

■ The ROV tool finds optimal solutions for specified assumptions. As with any
mathematical model, its usefulness must be judged in the context of its specific
application. OptQuest may find the optimal solution(s) for the assumptions it is
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fed, but there may well be non-quantifiable factors (political issues, for example)
that also affect the decision. These non-quantifiable factors may cause the values
of the decision variables chosen for implementation to be different from the
values indicated by OptQuest, but by using it to compare expected NPV from
both sets of decision variable values, the ROV tool will be able to provide an
idea of the cost of the nonquantifiable factors.

Use of ROV Tool in New Product Development

As an example of how the ROV tool can be used at various phases throughout the
product development process, consider the process depicted in Figure 13.3, which
is intended to represent a generic new product development project. Assume that
there are two competing technologies available initially that can be used in the
product.

During Phase 1 the two technologies under consideration are evaluated along
with two market segments and three sources of costs that have some uncertainty. The
widths of the boxes representing the technologies and markets in the tornado graph
at Phase 1 are wider than the boxes for costs because the uncertainty surrounding
technology and markets is greater at this earliest phase. The ROV model helps to
quantify the uncertainties and measure their impact on expected net present value.
At Decision 1, decisions about which technologies to employ are made, and some of
the uncertainty is resolved as decision makers learn more about the project in part
through building and revising the ROV model.

During Phase 2, the reduced uncertainty regarding the technology is depicted by
the ‘‘Tech’’ bars having smaller widths and thus moving down in the tornado graph.
At this phase, most of the uncertainty is in regard to markets and operating costs.
Decisions regarding the design of the product are made at Decision 2. Matching
product design to market opportunity is critical at this stage.

Technology 1

Technology 2

Market 1

Market 2

Market 1

Market 2

Market 1

Market 2

Market 3

Market 4

Cost 1 Tech 2

Tech 1

Cost 2

Cost 3
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Bring To
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Cost 2
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Cost 2

Cost 3

FIGURE 13.3 Managing risk and return throughout the product development process.
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Because the technology has already been been chosen at Phase 3, the great-
est uncertainties surround the markets for the product during this phase. Some
uncertainty remains in regard to costs and a third competing technology that has
emerged since Phase 1, but in this example, the ROV model is most useful for evalu-
ating the options available for marketing the product. At Decision 3, the marketing
decisions are made.

By linking the ROV model to stochastic demand, and taking into account the
uncertainty surrounding technology and operating costs, the decision makers gain a
better understanding of the impacts of these variables on their decisions. The ROV
tool provides confidence bounds on its estimates, enables sensitivity analysis of its
inputs, and leads to sound business decisions based upon expected net present value
or other summary measures of interest to management.

The ROV tool is an extension of the business-case Excel models that are
already in use at most companies. Thus it can be used with existing financial
models for strategic planning, comparing products offered by different vendors,
or estimating return on capital invested. Further, by adapting models to changing
business conditions or decisions that have been made, the ROV tool helps to
facilitate corporate memory and fosters consistency in decision making over time.
With endorsement and commitment from top management, its use adds value to
existing decision-making processes, encourages the establishment and monitoring of
milestones for evaluating options resulting from managerial flexibility, and provides
an ongoing framework within which learning from past successful and unsuccessful
projects can be used to improve future decisions. Cooper, Edgett, and Kleinschmidt
(2002) encourage managers to build in more effective go/kill decision points, and
instill a regular management review process to make these decisions. The ROV tool
is of great help in this process.

SUMMARY

This chapter has provided guidelines for developing business case models using the
ROV tool. The tasks required include selecting inputs as stochastic assumptions,
building and revising the model, adding and revising assumptions, and selecting
and defining decision variables. Sensitivity analysis can be useful in identifying the
assumptions that are most important for making a correct decision. The model
building process is ongoing. Once a functional ROV model has been developed,
additional information can be incorporated into the model as it becomes available.
This helps to facilitate corporate memory, and fosters consistency in decision making
over time.

The ROV tool approach to the valuation of managerial flexibility is itself highly
flexible in its ability to support managerial decisions in a wide variety of situations
involving real options. The greatest benefits from using the ROV tool will come to
managers when the tool is adopted for making decisions on a company-wide basis.
Using the structured approach of the ROV tool for decision making helps to ensure
consistency in decision making and to facilitate corporate memory and learning.
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The ROV tool can be used for strategic planning, comparing products offered
by different vendors, or supplement the use of existing financial models for esti-
mating return on invested capital. With endorsement and commitment from top
management, its use adds tremendous value to existing decision-making pro-
cesses and provide an ongoing framework that can be used to improve future
decisions.



APPENDIX A
Crystal Ball’s Probability

Distributions

T his appendix lists a short description of each distribution in the Crystal Ball gallery
along with its probability distribution function or probability density function

(PDF), cumulative distribution function (CDF) where available, mean, standard
deviation, and typical uses. For more information about these distributions, see
Evans, Hastings, and Peacock (1993), Johnson, Kemp, and Kotz (2005), Johnson,
Kotz, and Balakrishnan (1994), Law and Kelton (2000), or Pitman (1993).

All of Crystal Ball’s distributions can be truncated on either or both ends to
adapt to the circumstances of your model. Truncation is accomplished by entering
the desired values in the truncation fields. For example, in Figure A.1, the normally
distributed total return on a stock with nominal mean return 10 percent and nominal

FIGURE A.1 Normal distribution of a stock return truncated at −100 percent to reflect the limited
liability of stock ownership.

202
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standard deviation 50 percent is truncated at −100 percent to reflect the limited
liability of stock ownership.

When Crystal Ball truncates a distribution, the probability distribution is rescaled
so that the total probability is 100% that a value will be generated within the range
defined by the truncation points. For example, a random variable generated from the
distribution shown in Figure A.1 has a 100 percent probability of falling between
−100 percent and positive infinity. Therefore, truncation will affect the actual
mean and standard deviation of a random variable. In general, it is not easy to
determine the actual parameters of a truncated distribution analytically. However,
you can obtain these values by selecting View → Statistics from the top menu in
the assumption’s dialog window. For example, even though the mean and standard
deviation are specified in Figure A.1 to be 10 percent and 50 percent, the actual
mean and standard deviation of the random values generated by this truncated
distribution are 11.80 percent and 47.95 percent.

BERNOULLI

The Bernoulli distribution is the simplest discrete distribution. Among other uses, it
represents the toss of a coin, if we define ‘‘1’’ to mean ‘‘heads’’ and ‘‘0’’ to mean
‘‘tails’’ (or vice versa). For a fair coin, the probability, p, of obtaining heads is 0.5
as depicted in Figure A.2. However, a Bernoulli trial can represent a biased (unfair)
coin by specifying a different value for p. In financial modeling, it can be used to
model the occurrence of a single event, such as the possible entry of a competitor
into your market, for example.

The Bernoulli distribution is called the yes-no distribution in Crystal Ball. See
the yes-no section of this appendix for more details. Bernoulli assumptions can be
combined to generate values from other distributions. For example: the binomial
distribution describes the number of successes in n Bernoulli trials; the geometric
distribution describes the number of failures before the first success in a sequence of

FIGURE A.2 Bernoulli distribution representing the number of heads obtained (0 or 1) with one flip of
a fair coin.
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Bernoulli trials; and the negative binomial describes the number of Bernoulli trials
to get exactly β successes.

BETA

The standard beta distribution is defined for continuous values of x between 0 and
1, but Crystal Ball lets you select any minimum and maximum values, then it scales
the distribution to fit on that range with a shape determined by the alpha and beta
parameters you specify. The beta distribution can represent a random proportion
or probability, the time to complete a task, or as a rough model when you have no
historical data to use with Crystal Ball’s distribution fitting routine. For much more
information about the beta distribution, see Gupta and Nadarajah (2004).

Parameters: Minimum, the minimum value, a; Maximum, the maximum value,
b; Alpha, the first shape parameter, α > 0; Beta, the second shape parameter,
β > 0. See Figure A.3 for an example of the Beta PDF with a = −10, b = 10,
α = 2, and β = 3.

PDF:

f (x) =





zα−1(1 − z)β−1

B(α, β)
if 0 < x − a < b − a,

0 otherwise

where z = x−a
b−a , B(α, β) is the beta function, defined by B(α, β) = ∫ 1

0 tα−1(1 −
t)β−1 = �(α)�(β)

�(α+β) for any real numbers α > 0, and β > 0, and �(·) is the

FIGURE A.3 Beta distribution with a = −10, b = 10, α = 2, and β = 3.
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Gamma function defined by �(y) = ∫ ∞
0 ty−1e−tdt for any real number y > 0.

Note that �(k + 1) = k! for any nonnegative integer k, where k! = k · (k −
1) · · · (2) · (1) is read as ‘‘k-factorial.’’

CDF: No closed form.
Mean:

a + α

α + β
(b − a)

Standard deviation:

(b − a)

√
αβ

(α + β)2(α + β + 1)

Excel function: This distribution can be defined in two ways. Use

CB.Beta(Alpha,Beta,Scale,LowCutoff,HighCutoff,NameOf)

to define beta assumptions where a = 0, and b = Scale. If the distribution
has a minimum value not equal to zero, use

CB.Beta2(Min,Max,Alpha,Beta,HighCutoff,LowCutoff,NameOf).

where Min = a, Max = b, Alpha = α, and Beta = β.
Notes: The beta distribution is U shaped if α > 1 and β > 1, and is J shaped

if (α − 1)(β − 1) < 0. For all other permissible values of α and β it is
unimodal.

BINOMIAL

The binomial distribution is a discrete distribution of the sum of n Bernoulli trials
with constant probability of success, p, so it represents the number of successes in a
specified number of attempts if the chance of success is the same for every attempt
and the attempts are independent.

Parameters: Probability, the probability of success, p, such that 0 < p < 1;
Trials, the total number of trials, n, where n is an integer such that
1 ≤ n ≤ 1000. See Figure A.4 for an example of the Binomial probability
distribution function with p = 0.5, and n = 50.

PDF:

f (x) =





n!
x!(n − x)!

px(1 − p)n−x for x = 0, 1, 2, . . . , n

0 otherwise
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FIGURE A.4 Binomial(0.5,50) distribution.

CDF:

F(x) =






x∑

y=0

n!
y!(n − y)!

py(1 − p)n−y for x = 0, 1, 2, . . . , n

0 otherwise

Mean:
np

Standard deviation: √
np(1 − p)

Excel function:

CB.Binomial(Prob,Trials,LowCutoff,HighCutoff,NameOf)

where Prob = p, and Trials = n.
Notes: The binomial distribution is equivalent to the distribution of a sum of

Bernoulli random variables with the same probability of success, p. Thus,
the sum of a binomial(p, n1) variable and a binomial(p, n2) variable has the
binomial(p, n1 + n2) distribution. However, the sum of binomial distribu-
tions with different values of p does not follow a binomial distribution. The
binomial distribution is symmetric when p = 0.5.
You cannot specify n > 1000 in Crystal Ball. To model such a situation,
use as an approximation the Normal distribution with mean and standard
deviation computed according to the expressions above, and truncated
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at 0 and n + 0.99999. Use Excel’s =ROUNDOWN(number,num digits)
command to obtain a discrete value, if desired.
A beta binomial distribution can be simulated in Crystal Ball by defining
the parameter p in a binomial distribution as a beta random variable. See
file AppendixA.xls.

CUSTOM

The Custom distribution is defined by specifying a list of discrete values, continuous
ranges of values, or discrete ranges of values, along with the associated probabilities.
Once you choose the Custom from the Distribution Gallery, select Parameters from
the top menu to specify the type of values you wish to use. You may enter the data
values and probabilities directly in the dialog, or load them in from the worksheet
by clicking the Load Data. . . button. You may also use the Excel function

CB.Custom(CellRange,NameOf)

where CellRange contains the data, and NameOf is the name of the assumption. See
file AppendixA.xls for examples.

The custom distribution is very flexible, and is easily understood by inspection
of the following examples:

■ See Figure A.5 for an example of the custom PDF with unweighted values. This
is specified by a list of discrete values, each of which will occur with the same
probability.

FIGURE A.5 Custom distribution specified with Unweighted Values
parameters.
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FIGURE A.6 Custom distribution specified with Weighted Values parameters.

■ See Figure A.6 for an example of the custom PDF with weighted values. This
is specified by a list of discrete values and their associated probabilities of
occurrence.

■ See Figure A.7 for an example of the custom PDF with continuous ranges. This
is specified by ranges of values within which the continuous values have equal
probability of occurrence by default.

FIGURE A.7 Custom distribution specified with Continuous Ranges parameters.
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FIGURE A.8 Custom distribution specified with Discrete Ranges parameters.

■ See Figure A.8 for an example of the custom PDF with discrete ranges values.
This is specified by ranges of values within which the discrete values have equal
probability of occurrence.

■ See Figure A.9 for an example of the custom PDF with sloping ranges values.
This is specified by ranges of discrete values within which the probabilities
increase or decrease linearly.

Note that the vertical axes in Figures A.5 through A.9 are all labeled ‘‘Relative
Probability.’’ This means that the probabilities that you specify to define a custom
distribution do not have to sum to 1.0; however, the specified probabilities are scaled
by Crystal Ball such that the values used during the simulation do sum to 1.0.

DISCRETE UNIFORM

The discrete uniform distribution is used for modeling the random occurrence of
one of several possible outcomes, each of which is equally likely. It may be used as
a first model in the absence of data for modeling a quantity that varies among the
integers {a, a + 1, a + 2, . . . , b − 1, b}, but about which little else is known.

Parameters: Minimum, the minimum value, a, an integer where −∞ < a < ∞;
and Maximum, the maximum value, b, and integer where −∞ < b < ∞,
and a < b. See Figure A.10 for an example of this pdf.
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FIGURE A.9 Custom distribution specified with Sloping Ranges parameters.

FIGURE A.10 Discrete uniform distribution with a = 0, and b = 11.
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PDF:

f (x) =





1
b − a + 1

for a < x < b,

0 otherwise

where x is an integer.
CDF:

F(x) =






0 if x < a,
�x� − a + 1
b − a + 1

for a < x < b,

1 if b < x

where �x� denotes the greatest integer less than or equal to x.
Mean:

b − a
2

Standard deviation: √
(b − a + 1)2 − 1

12

Excel function:

CB.DiscreteUniform(Min,Max,LowCutoff,HighCutoff,

NameOf)

where Min = a, and Max = b.
Notes: The discrete uniform distribution for a = 0, and b = 1 is the same as the

yes-no distribution with p = 0.5.

EXPONENTIAL

The exponential distribution is used to model continuous random variables that are
nonnegative. It is used primarily to model the time between random events that
occur at a constant average rate, such as the time between customer arrivals to
service facilities.

Parameters: Rate, the constant average rate, λ > 0. See Figure A.11 for an
example of the Exponential distribution with λ = 10.

PDF:

f (x) =
{

λe−λx = for x ≥ 0
0 otherwise
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FIGURE A.11 Exponential distribution with λ = 10.

CDF:

F(x) =
{

1 − e−λx for x ≥ 0
0 otherwise

Mean:
1/λ

Standard deviation:
1/λ

Excel function:

CB.Exponential(Rate,LowCutoff,HighCutoff,NameOf)

where Rate = λ.
Notes: The exponential distribution with rate λ is a special case of the gamma

distribution (with L = 0, s = λ, and β = 1), and the Weibull distribution
(with L = 0, s = λ, and β = 1).
The exponential is the only continuous distribution with the memoryless
property, which for the exponential random variable, X, is defined by

Pr(X > s + t|X > s) = Pr(X > t) for all s, t > 0.

For customer arrivals occurring at a constant average rate λ, the memoryless
property implies that no matter how long it has been since a customer
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has arrived, the time until the next arrival still follows the exponential
distribution with rate λ.
Values from the Laplace, which is also known as the double exponential
distribution, can be generated easily in Crystal Ball as follows. In one cell,
define an assumption X as an exponential distribution with parameter λ,
and in another cell define an assumption B as a yes-no distribution with
p = 0.5. In a third cell, put in the formula Y = (2B − 1)X. Then Y follows
the Laplace distribution with mean 0 and standard deviation 1/

√
λ.

GAMMA

The gamma is a continuous distribution used often for modeling the time required
to complete some task, such as repairing a machine or waiting on a customer in a
service facility.

Parameters: Location, the location parameter, L; Scale, the scale parameter,
s > 0; and Shape, the shape parameter, β > 0. See Figure A.12 for an
example of the beta distribution with L = 0, s = 1, and β = 2.

PDF:

f (x) =





(
x−L

s

)β−1
e− x−L

s

�(β)s
for x > L

0 otherwise

FIGURE A.12 Gamma distribution with L = 0, s = 1, and β = 2.
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where �(·) is the gamma function defined in the beta distribution section of
this appendix.

CDF: If β is not an integer, there is no closed form; for β an integer

F(x) =




1 − e− x−L

s
∑β−1

i=0

(
x−L

s

)i

i!
for x > L

0 otherwise

Mean:
sβ

Standard deviation:
s
√

β

Excel function:

CB.Gamma(Loc,Scale,Shape,LowCutoff,HighCutoff,NameOf)

Notes: The gamma distribution with L = 0, and β = 1 is the same as the
Exponential distribution with rate s.
The gamma distribution with L = 0, and β = k, where k is a positive integer
is called the k-Erlang distribution with rate s.
For a positive integer, k, the gamma distribution with L = 0, β = k/2, and
s = 2 is the same as the chi-square distribution with k degrees of freedom.

GEOMETRIC

The geometric distribution is used to model the number of trials to get the first
success in a sequence of IID Bernoulli trials with probability p of success on each
trial. For example, it can be applied to model the number of calls a salesperson
makes to obtain her first sale, the number of items in a batch of random size, or the
number of items demanded by a customer.

Parameters: Probability, the probability of success, p. See Figure A.13 for an
example of the geometric PDF with p = 0.2.

PDF:

f (x) =
{

p(1 − p)x−1 for x ∈ {1, 2, 3, . . .
0 otherwise

CDF:

F(x) =
{

1 − (1 − p)�x� for x ≥ 1
0 otherwise
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FIGURE A.13 Geometric distribution with p = 0.2.

Mean:
1
p

Standard deviation: √
1 − p
p

Excel function:

CB.Geometric(Prob,LowCutoff,HighCutoff,NameOf)

where Prob = p.
Notes: The geometric distribution is a discrete analogue of the exponential

distribution, and is the only discrete distribution with the memoryless
property, which for the geometric random variable, Y, is defined by

Pr(Y − k = m|Y ≥ k) = Pr(Y = m) for k ≥ 0 and m = 0, 1, . . .

For a gambler making the same bet on roulette that has probability p of
winning, the memoryless property implies that no matter how many times
the gambler has bet, the number of spins of the roulette wheel until the
gambler wins still follows the geometric distribution.
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An alternative form of the geometric distribution involves the number of
Bernoulli trials up to, but not including, the first success. The random
variable defined by a draw from a geometric distribution with probability,
p, follows the negative binomial distribution with probability, p, and shape
parameter, β = 1.

HYPERGEOMETRIC

The hypergeometric is the discrete distribution of the number of successes in a sample
drawn without replacement from a population with known numbers of successes
and failures.

Parameters: Success, the number of successful items in the population, Nx;
Trials, the number of items in the sample, n; and Population, the population
size, N. The number of failures in the population is N − Nx. See Figure A.14
for an example of the hypergeometric distribution with Nx = 50, n = 50,
and N = 100.

PDF:

f (x) =






(Nx
x

)(N−Nx
n−x

)
(N

n

) for a ≤ x ≤ b

0 otherwise

where x is an integer, a = max[0, n − N + Nx], and b = min[Nx, n].

FIGURE A.14 Hypergeometric distribution with Nx = 50, n = 50, and N = 100.
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CDF:

F(x) =






0 for a < x
�x�∑

i=0

(Nx
i

)(N−Nx
n−i

)
(N

n

) for a ≤ x ≤ b

1 for b < x

Mean:

n
(

Nx

N

)

Standard deviation: √

n
(

Nx

N

) (
1 − Nx

N

) (
N − n
N − 1

)

Excel function:

CB.Hypergeometric2(Success,Trials,Population,LowCutoff,HighCutoff,

NameOf)

where Success = Nx, Trials = n, and Population = N.
Notes: You cannot specify N > 1000 or n > 1000 for Crystal Ball’s hypergeo-

metric distribution. To model such a situation, use as an approximation the
normal distribution with mean and standard deviation computed according
to the expressions above, and truncated at 0 and n + 0.99999. Use Excel’s
=ROUNDDOWN(number,num digits) command to obtain a discrete value.

LOGISTIC

The logistic is a continuous distribution that appears often near the top of the list
of distributions Crystal Ball suggests when fitting distributions to stock returns and
other financial data. It has fatter tails than the normal distribution. The excess
kurtosis of the logistic distribution is 1.2. The logistic distribution has been applied
to models in the areas of population growth, bioassay, medical diagnosis, and
public health, among others. For much more about the logistic distribution, see
Balakrishnan (1991).

Parameters: Mean, the mean of the distribution, µ; and Scale, the scale
parameter, s > 0. See Figure A.15 for an example of the standard logistic
distribution, which has µ = 0 and s = 1.

PDF:

f (x) =




sech2

[
x − µ

2s

]

4s
for − ∞ < x < ∞
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FIGURE A.15 Logistic distribution with µ = 0 and s = 1.

or

f (x) =
{

z
s(1 + z)2

for − ∞ < x < ∞

where z = e−(x−µ)/s

CDF:

F(x) =
{

1 − 1
1 + z

for − ∞ < x < ∞

Mean:
µ

Standard deviation:
πs√

3

Excel function:

CB.Logistic(Mean,Scale,LowCutoff,HighCutoff,NameOf)

where Mean = µ and Scale = s.
Notes: Because the PDF of the logistic distribution can be expressed in terms of

the square of the hyperbolic secant function, sech, it is sometimes called the
sech-squared distribution.
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LOGNORMAL

If ln(X), the natural logarithm of random variable X, follows a normal distribution,
then X is said to follow the lognormal distribution. The lognormal distribution
arises often in financial modeling and risk analysis because of the product version of
the central limit effect (see section 4.1.7).

Parameters: Mean, the mean, µL > 0; and Std. Dev., the standard deviation,
σL > 0. See Figure A.16 for an example of the lognormal PDF with µL =
2.72 and σL = 1.

PDF:

f (x) =





1

x
√

2πσ 2
e−(ln x−µ)2/2σ2

for x > 0

0 otherwise

where

µ = ln µL − 1
2

ln
(

1 + σ 2
L

µ2
L

)

and

σ =
√

ln
(

1 + σ 2
L

µ2
L

)

FIGURE A.16 Lognormal distribution with µL = 2.72 and σL = 1.
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CDF: No closed form.
Mean:

µL = eµ+σ2/2

Standard deviation:
σL =

√
e2µ+σ2

(
eσ2 − 1

)

Excel function:

CB.Lognormal2(LogMean,LogStdDev,LowCutoff,HighCutoff,NameOf)

where LogMean = µL, and LogStdDev = σL. You may also use

CB.Lognormal(Mean,StdDev,LowCutoff,HighCutoff,NameOf)

where Mean = µ, and StdDev = σ .
Notes: Be sure to keep clear the difference between µL and σL, the mean and

standard deviation of the lognormal random variable, X; and µ and σ , the
mean and standard deviation of the normal distribution followed by ln(X),
the natural logarithm of X.

MAXIMUM EXTREME

The maximum extreme distribution is the positively skewed form of the extreme
value distribution. Crystal Ball’s maximum extreme distribution is sometimes called
the type 1 extreme value distribution. It has been applied to models in the areas of
flood flows, radioactive emissions and human lifetimes, rupture of solids, earthquake
magnitudes, estimation of insurance premiums, and stock market movements, among
others. For more information, see de Haan and Ferreira (2006).

Parameters: Likeliest, the mode, m; and Scale, the scale parameter, s > 0. See
Figure A.17 for an example of this PDF with m = 0 and s = 1, which is called
the standard maximum extreme distribution, or the Gumbel distribution.

PDF:

f (x) =
{ z

s
e−z for − ∞ < x < ∞
0 otherwise

where z = e−(x−m)/s.
CDF:

F(x) =
{

e−z for − ∞ < x < ∞
0 otherwise
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FIGURE A.17 Maximum extreme distribution with m = 0, and s = 1.

Mean:
m + 0.57722s

Standard deviation: sπ√
6

Excel function:

CB.MaxExtreme(Likeliest,Scale,LowCutoff,HighCutoff,NameOf)

where Likeliest = m, and Scale = s.
Notes: The maximum extreme distribution has skewness coefficient 1.139547,

and excess kurtosis 2.4.
Because of the functional form of f (x), the maximum extreme distribution
is sometimes called the doubly exponential distribution. Do not confuse the
doubly exponential distribution with the double exponential (aka Laplace)
distribution.

MINIMUM EXTREME

Parameters: Likeliest, the mode, m; and Scale, the scale parameter, s > 0. See
Figure A.18 for an example of this PDF with m = 0, and s = 1, which is
called the standard minimum extreme distribution.
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FIGURE A.18 Minimum extreme distribution with m = 0, and s = 1.

PDF:

f (x) =
{ z

s
e−z for − ∞ < x < ∞
0 otherwise

where z = e
(x−m)

s .
CDF:

F(x) =
{

e−z for x ≥ 0
0 otherwise

Mean:
m − 0.57722s

Standard deviation: sπ√
6

Excel function:

CB.MinExtreme(Likeliest,Scale,LowCutoff,HighCutoff,NameOf)

where Likeliest = m and Scale = s.
Notes: The minimum extreme distribution has skewness coefficient −1.139547,

and excess kurtosis 2.4.
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NEGATIVE BINOMIAL

The negative binomial assumption in Crystal Ball is the discrete distribution of
the total number of Bernoulli trials required to get exactly β successes where each
Bernoulli trial has probability of success, p. Thus, the smallest value that a Crystal
Ball negative binomial assumption can generate is β, and the largest potential
number is infinitely large.

Parameters: Probability, the probability of success on each trial, p where 0 <

p < 1; and Shape, the number of successes, β, where β > 0 is an integer.
See Figure A.19 for an example of the negative binomial PDF with p = 0.2,
and β = 10.

PDF:

f (x) =
{ (x−1

β−1

)
pβ(1 − p)x−β for x ≥ β

0 otherwise

where x is an integer.
CDF:

F(x) =






�x�∑

i=β

(
i − 1
β − 1

)
pβ(1 − p)i−β for x ≥ β

0 otherwise

FIGURE A.19 Negative binomial distribution with p = 0.2, and β = 10.
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Mean:
β/p

Standard Deviation: √
β(1 − p)/p

Excel Function:

CB.NegBinomial(Prob,Shape,LowCutoff,HighCutoff,NameOf)

where Prob = p and Shape = β.
Notes: The negative binomial distribution is also defined for noninteger β, but

is not implemented in Crystal Ball for such values of β.

NORMAL

The normal is arguably the best known continuous distribution because of the
Central Limit Theorem (see Chapter 4) and its application in many fields. The
Normal is sometimes called the Gaussian distribution. For more information about
the Normal distribution, see Patel and Read (1996).

Parameters: Mean, the location parameter, µ, where −∞ < µ < ∞; and
Std. Dev., the scale parameter, σ , where σ > 0. See Figure A.20 for an
example of the standard normal distribution, which has parameters µ = 0,
and σ = 1.

FIGURE A.20 Normal distribution with µ = 0 and σ = 1.
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PDF:

f (x) =





1√
2πσ

e−(x−µ)2/2σ2
for − ∞ < x < ∞

0 otherwise

CDF: No closed form.
Mean:

µ

Standard deviation:
σ

Excel function:

CB.Normal(Mean,StdDev,LowCutoff,HighCutoff,NameOf)

where Mean = µ and StdDev = σ .
Notes: The normal distribution is symmetric, so has skewness coefficient 0.

The kurtosis coefficient of any normal distribution is 3. Because the normal
distribution is the standard to which the kurtosis coefficient of any other
distribution is often compared, statisticians have defined the excess kurtosis
coefficient to be equal to the kurtosis coefficient minus 3.

PARETO

The Pareto is a continuous distribution first used by economist Vilfredo Pareto in
the late 1800s to describe the distribution of income over a population. For more
information about the Pareto distribution, see Arnold (1983).

Parameters: Location, the location parameter, L, where L > 0; and Shape, the
shape parameter, β, where β > 0. See Figure A.21 for an example of the
Pareto distribution with L = 1, and β = 2.

PDF:

f (x) =
{

βLβ/xβ+1 for x ≥ L
0 otherwise

CDF:

F(x) =
{

1 − (L/x)
β for x ≥ L

0 otherwise

Mean:
βL

β − 1
for β > 1

Standard deviation:
βL2

(β − 1)2(β − 2)
for β > 2
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FIGURE A.21 Pareto distribution with L = 1 and β = 2.

Excel function:

CB.Pareto(Loc,Shape,LowCutoff,HighCutoff,NameOf)

where Loc = L, and Shape = β.
Notes: Pareto’s work gave rise to the so-called 80–20 rule, whereby it is

maintained that 80 percent of the wealth of a society is owned by 20 percent
of the population. This rule has been expanded to other applications, and
forms the basis of Pareto charts in Six Sigma quality management.

POISSON

The Poisson is the discrete distribution of the number of events that occur in a fixed
area of opportunity when the events are occurring at a constant rate.

Parameters: Rate, the constant rate of occurrence, λ, where λ > 0. See
Figure A.22 for an example of the Poisson distribution with λ = 10.

PDF:

f (x) =
{

λxe−λ/x! for x ≥ 0
0 otherwise

where x is an integer.
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FIGURE A.22 Poisson distribution with λ = 10.

CDF:

F(x) =






x∑

i=0

λie−λ/i! for x ≥ 0

0 otherwise

Mean:
λ

Standard deviation: √
λ

Excel function:

CB.Poisson(Rate,LowCutoff,HighCutoff,NameOf)

where Rate = λ,
Notes: The Poisson distribution is usually applied to situations in which the

number of potential opportunities for the outcomes to occur is large, but
the probability of each occurrence is relatively small.
A notable application of the Poisson distribution was the number of deaths
per year from kicks by horses in the Prussian Army Corps (Bortkiewicz
1898; see also Quine and Seneta 1987).
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STUDENT’S T

Parameters: Midpoint, the midpoint of the distribution, m, where −∞ < m <

∞; Scale, the scale parameter, s, where s > 0; and Deg. Freedom, the num-
ber of degrees of freedom, d, an integer where 0 < d ≤ 30. See Figure A.23
for an example of the Student’s t distribution with m = 0, s = 1, and d = 5.

PDF:

f (x) =






�

(
d + 1

2

)

√
dπ�

(
d
2

)(
1 + z2

d

) d+1
2

for − ∞ < x < ∞

0 otherwise

where z = x−m
s , and �(·) is the Gamma function defined in the discussion of

the beta distribution in this appendix.
CDF:

F(x) =






1
2

+ tan−1

(
z√
d

)
+ z

√
d

d + z2
×

(d−3)/2∑

j=0

aj
(
1 + z2/d

)j

for d odd and − ∞ < x < ∞
1
2

+ z

2
√

d + z2
×

(d−2)/2∑

j=0

bj
(
1 + z2/d

)j

for d even and − ∞ < x < ∞
0 otherwise

FIGURE A.23 Student’s t distribution with m = 0, s = 1, and d = 5.
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where z = x − m
s

, aj = [2j/(2j + 1)] aj−1, a0 = 1, bj = [(2j − 1)/2j] bj−1, and

b0 = 1.
Mean:

m, for d > 1

Standard deviation: √
sd/(d − 2), for d > 2

Excel function:

CB.StudentT(Midpoint,Scale,Degrees,LowCutoff,HighCutoff,NameOf)

Notes: The Student’s t distribution with m = 0 and d = 1 is called the standard
Cauchy distribution, for which the mean and standard deviation do not
exist (are infinite).

TRIANGULAR

The triangular distribution is used most often as a rough distribution in the absence
of data. Its use as an approximation to the normal distribution is discussed in
Bell (1962).

Parameters: Minimum, the minimum value, a, where −∞ < a < ∞; Likeliest,
the mode, m, where −∞ < a ≤ m < ∞; and Maximum, the maximum
value, b, where −∞ < a ≤ m ≤ b < ∞, but a < b. See Figure A.24 for an
example of the Triangular distribution with a = −10, m = 0, and b = 10.

FIGURE A.24 Triangular distribution with a = −10, m = 0, and b = 10.
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PDF:

f (x) =






2(x − a)
(m − a)(b − a)

for a ≤ x ≤ m

2(b − x)
(b − m)(b − a)

for m < x ≤ b

0 otherwise

CDF:

F(x) =






0 for x < a
(x − a)2

(m − a)(b − a)
for a ≤ x ≤ m

1 − (b − x)2

(b − m)(b − a)
for m < x ≤ b

1 for b < x

Mean:
a + m + b

3

Standard deviation: √
a2 + m2 + b2 − am − ab − bm

18

Excel function:

CB.Triangular(Minimum,Likeliest,Maximum,LowCutoff,HighCutoff,

NameOf)

where Minimum = a, Likeliest = m, and Maximum = b.
Notes: The standard triangular distribution is obtained when a = 0 and b = 1.

If m = 1/2, the standard triangular distribution is symmetric. For more
information about the triangular distribution, see Ayyangar (1941).

UNIFORM

The uniform distribution is used most often as a rough distribution in the absence
of data. It applies to any continuous random variable for which the largest and
smallest possible values can be specified, with equal likelihood for the occurrence of
any value in between the minimum and maximum values.

Parameters: Minimum, the minimum value, a, where −∞ < a < ∞; and
Maximum, the maximum value, b, where −∞ < a < b < ∞. See
Figure A.25 for an example of the uniform distribution with a = −10
and b = 10.
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FIGURE A.25 Uniform distribution with a = −10 and b = 10.

PDF:

f (x) =





1
b − a

for a < x < b

0 otherwise

CDF:

F(x) =






0 for x < a
x − a
b − a

for a ≥ x ≥ b

1 for b < x

Mean:
a + b

2

Standard deviation:
b − a√

12

Excel function:

CB.Uniform(Min,Max,LowCutoff,HighCutoff,NameOf)

where Min = a, and Max = b.
Notes: The uniform distribution with a = 0 and b = 1 is used in generating

variates from all other distributions in Crystal Ball. See Appendix B for
details.
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WEIBULL

The Weibull distribution is widely used in engineering practice to represent the
lifetime of a system component composed of many parts that fails when the first
of these parts fails. The Weibull has been applied to problems in the areas of tidal
height, efficacy of medical treatment, insurance claims, maintenance of street lights,
rock blasting, and spare part planning. For more about the Weibull distribution, see
Prabhakar Murthy, Min, and Jiang (2004).

Parameters: Location, the location parameter, L, where −∞ < L < ∞; Scale,
the scale parameter, s, where s > 0; and Shape, the shape parameter, β,
where β > 0. See Figure A.26 for an example of the Weibull distribution
with L = 0, s = 1, and β = 2.

PDF:

f (x) =





β

s

(
x − L

s

)β−1

e
−




x − L

s





for x ≥ L

0 otherwise

CDF:

F(x) =




 1 − e
−




x − L

s




β

for x ≥ L
0 otherwise

FIGURE A.26 Weibull distribution with L = 0, s = 1, and β = 2.
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Mean:

L + s�
[
β + 1

β

]

where �[·] is the gamma function defined in section A.2.
Standard deviation:

s

√√√√
(

�

[
β + 2

β

]
−

{
�

[
β + 1

β

]}2
)

Excel function:

CB.Weibull(Loc,Scale,Shape,LowCutoff,HighCutoff,NameOf)

where Loc = L, Scale = s, and Shape = β.
Notes: The Weibull distribution with β = 2 is also known as the Rayleigh

distribution.

YES-NO

The yes-no distribution describes a random occurrence with two possible outcomes,
which are usually denoted by x = 1 (a ‘‘success’’) and x = 0 (‘‘failure’’).

Parameters: Probability of Yes(1), the probability of a success, p, where 0 < p <

1. See Figure A.27 for an example of the yes-no distribution with p = 0.8.

FIGURE A.27 Yes-no distribution with p = 0.8.
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PDF:

f (x) =





1 − p for x = 0
p for x = 1
0 otherwise

CDF:

F(x) =





0 for x < 0
1 − p for 0 ≤ x ≤ 1

1 for 1 ≥ x

Mean:
p

Standard deviation: √
p(1 − p)

Excel function:

CB.YesNo(Prob,LowCutoff,HighCutoff,NameOf)

where Prob = p.
Notes: The yes-no distribution is also known as the Bernoulli distribution, and

is equivalent to the binomial distribution with n = 1.



APPENDIX B
Generating Assumption Values

This appendix provides a brief description of how Crystal Ball generates values from
its assumptions, to which we refer in this appendix as random numbers and random
variates. For our purposes, a random number is a computer-generated number that
appears to be drawn from the uniform probability distribution with a = 0 and b = 1
(see Appendix A), independently of the other random numbers. A random variate
is a computer-generated number that appears to be drawn independently from any
other probability distribution.

Crystal Ball uses a variety of methods to generate independent random variates
by transforming random numbers. The choice of transformation depends on several
factors, such as the type and parameters of the distribution, as well as the sampling
method used (Monte Carlo or Latin Hypercube). For illustration, the inverse
transform random-variate generation method is described below, and references
are given for the other methods Crystal Ball uses. For more information about
generating random numbers and variates, see Bratley, Fox, and Schrage (1987),
Fishman (2006), Glasserman (2004), Law and Kelton (2000), and the references
listed in the Bibliography section of the Crystal Ball User Manual.

GENERATING RANDOM NUMBERS

Crystal Ball generates random numbers using a linear congruential generator (LCG).
An LCG is defined by the recursive formula

Zi = (aZi−1 + c)(mod m) (B.1)

where m is the modulus, a is the multiplier, c is the increment, and Z0 is the seed.
The operator ‘‘mod’’ in Expression B.1 represents modulo reduction, which means
to take the remainder after dividing by the modulus. For example, 31(mod 8) = 7,
because 8 goes into 31 three times with a remainder of 7. Likewise, 3(mod 8) = 3,
11(mod 8) = 3, and 890(mod 8) = 2.

Modulo reduction is used simply to ensure that the LCG delivers a sequence of
integers, Zi such that 0 ≤ Zi ≤ m − 1. After dividing each integer by the modulus, m,
we get a sequence Ui = Zi/m for i = 1, 2, . . . , m − 1 that appears to be iid U(0, 1). If

235
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c > 0, the recursion in Expression B.1 is called a mixed LCG. If c = 0, the recursion
is called a multiplicative LCG.

Example LCG

To understand how LCGs work, consider the mixed LCG with a = 5, c = 1, m = 8,
and Z0 = 3,

Zi = (5Zi−1 + 1)(mod 8),

which is in cells A3:C23 of file LCGExamples.xls shown Figure B.1. This simple
LCG has three desirable features:

1. Because the LCG generates the m = 8 integers {0, 1, 2, 3, 4, 5, 6, 7} before it
repeats, the LCG is said to be full period.

2. The integers appear to be generated independently of each other in the sense
that they do not occur in any readily identifiable systematic order, such as {7, 6,
5, 4, 3, 2, 1, 0}.

3. By specifying the seed, you can determine the rest of the stream of ‘‘random’’
numbers.

FIGURE B.1 LCG defined by
Zi = (5Zi−1 + 1)(mod 8) with Z0 = 3.
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Because the stream of numbers appears random, but is actually deterministic and in
the systematic order defined by the recursion, the values generated by an LCG are
often called pseudorandom numbers.

The parameters must be chosen carefully to give an LCG full period. For
example, make the LCG in Figure B.1 multiplicative by setting the increment,
c = 0, and the LCG will generate the set of integers {3, 7, 3, 7, . . . }, which
makes the LCG less than full period. This is undesirable because it is inefficient,
and can be misleading. If you use m − 1 random numbers from a mixed LCG
that is less than full cycle, you will be using some of the random numbers more
than once, so the estimates you obtain from the simulation will not be as precise
as they would be based on m − 1 random numbers from a mixed LCG that is
full cycle.

Now consider the multiplicative LCG with a = 5, m = 7, and Z0 = 3,

Zi = 5Zi−1 mod 7,

which is in cells A27:C47 of file LCGExample.xls shown Figure B.2. This mul-
tiplicative LCG generates the m − 1 = 6 integers 1 through 6. Clearly, if a
multiplicative LCG somehow generated Zi = 0 for any i, then all other Zis would

FIGURE B.2 LCG defined by Zi = 5Zi−1

mod 8 with Z0 = 3.
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equal zero, too. Therefore, the multiplicative LCGs of most use are those that
generate the integers 1 through m − 1, where m is a large number. Fortunately,
researchers have developed LCGs with good statistical properties, and Crystal Ball
uses one of these good LCGs in its algorithms.

Crystal Ball’s LCG

Crystal Ball version 7.2 uses the prime modulus multiplicative linear congruential
generator defined by

Zi = (62089911Zi−1)(mod 231 − 1),

where the modulus m = 231 − 1 = 2,147,483,647 is a prime number (i.e., evenly
divisible only by itself and 1) chosen in conjunction with a = 62089911 to give
the LCG good statistical properties and compatibility with personal computer
architectures. For more information about choosing the parameters of an LCG, see
Knuth (1998).

Crystal Ball’s generator has period m − 1 = 231 − 2 = 2,147,483,646, so is
capable of delivering more than 2 billion distinct random numbers. By setting Seed
in Run Prefs. . . you are determining Z0. If Seed is set to 0, CB will determine
the seed based on the number of milliseconds since Windows was last started on
your computer.

Excel’s Random Number Generator

Excel has a random number generator that it uses for its =rand() function. The first
random number is:

ri = fractional part of (9821 ∗ ri−1 + 0.211327) for i = 1, 2, . . .

where r0 = .5. Excel’s random number generator will provide up to 1 million
different numbers. Through a specification in an initialization file, you can have
Excel determine its seed, r0, from the system clock. See

http://support.microsoft.com/kb/q86523/

for more information.
Besides being able to generate only a small fraction of the number of random

numbers Crystal Ball can produce, this generator has relatively poor statistical
properties. For more information about random number generators and their
statistical properties, see the Web site,

http://random.mat.sbg.ac.at/links/rando.html.
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GENERATING RANDOM VARIATES

Crystal Ball uses random numbers in a variety of methods to generate random
variates. The particular method used depends on the assumption’s distribution
function, and the type of sampling (Monte Carlo or Latin Hypercube) you have
specified in the Run Preferences. The specific method used to generate random
variates from each assumption is listed in Chapter 2 of the Crystal Ball Reference
Manual. In this appendix, we will consider just one of the methods, inverse
transformation, and see how Latin Hypercube sampling is used with it to make
the sampling ‘‘more even.’’

Inverse-Transform Method

Suppose that you want to generate a random variate, x, from a distribution with
CDF, F(x). The inverse-transform method takes a random number, u, from the
interval (0, 1), and transforms it into a random variate, x, by using the inverse of
X’s distribution function, F−1(x).

For example, suppose X has the right triangular distribution with PDF

f (x) = x/50 for 0 ≤ x ≤ 10,

shown in Figure B.3, and CDF

F(x) = x2/100 for 0 ≤ x ≤ 10,

shown in Figure B.4. This distribution is the same as a Crystal Ball triangular
assumption with a = 0, b = 10, and m = 10 (see Appendix A), so we will designate

FIGURE B.3 Triangular PDF, f (x) = x/50 for 0 ≤ x ≤ 10.
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FIGURE B.4 Triangular CDF, F(x) = x2/100 for 0 ≤ x ≤ 10. This is the cumulative distribution
function for the PDF given in Figure B.3. The figure also illustrates the inverse-transform algorithm. For
U = .16, F−1(.16) = 10

√
.16 = 4, and for U = .81, F−1(.81) = 10

√
.81 = 9.

it as triangular(0,10,10). Given a value, u, generated by Crystal Ball’s LCG, a
corresponding value from the distribution of X is found by inverting the CDF as
follows to get an expression for x as a function of u:

F(x) = u = x2/100 ⇒ x = 10
√

u.

Figure B.4 illustrates the inverse transformation. For the value u = .81, the
corresponding variate from the triangular(0,10,10) distribution is determined as
x = 10

√
.81 = 9; and for u = .16, the triangular(0,10,10) variate is x = 10

√
.16 =

4. By generating many such values of u randomly between 0 and 1, we get a
Monte Carlo sample from the triangular(0,10,10) distribution of X. See the file
InverseTransform.xls for a demonstration.

The inverse-transform method also works for discrete random variables. In some
cases, it is difficult or impossible to find a closed-form formula for F−1(x), so the
inverse-transform method cannot be used. However, it is also possible to generate
random variates from the distributions for which Excel provides inverse distribution
functions. For example, the file InverseTransform.xls shows how a uniform(0,1)
random number in cell A9 is used to generate random variates from the beta
distribution with parameters α = 2, β = 3, a = 0, and b = 10 (see section A.2). This
is done by using in cell B9 the formula =BETAINV(A9,2,3,0,10). Excel’s BETAINV
function uses a numerical approximation to the inverse CDF, F−1(x), for the beta
distribution. For more information about the inverse-transform method and other
ways to generate random variates, see Chapter 8 of Law and Kelton (2000), or
Chapter 3 of Fishman (2006).
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LATIN HYPERCUBE SAMPLING

Latin Hypercube sampling (LHS) is a form of stratified sampling that Crystal Ball’s
authors have implemented to help ensure that all portions of the distribution are
used to generate random variates, especially the tails. To illustrate how LHS works,
consider Figure B.5, in which the triangular(0,10,10) CDF is stratified into five equal
pieces by values of F(x). Stratum A includes values of F(x) between 0 and 0.2,
stratum B includes values of F(x) between 0.2 and 0.4, stratum C includes values of
F(x) between 0.4 and 0.6, stratum D includes values of F(x) between 0.6 and 0.8,
and Stratum E includes values of F(x) between 0.8 and 1.0. Figure B.6 shows the
PDF for the triangular(0,10,10) distribution with the same strata, A through E. By
construction, each of the five pieces of the PDF has area 0.2.

With Latin Hypercube sampling enabled, Crystal Ball will randomly select one
of the strata, then generate a random variate, u, within that stratum and compute the
corresponding random variate x. On the next trial, it will randomly select a stratum
that has not yet been selected, and compute the random variate x corresponding to
the value of u selected. It will continue this until all five strata have been used, then
will repeat the process until one of the stopping criteria is met.

If more trials are specified than the number of strata, then Crystal Ball will
attempt to split up evenly the number of trials for which each stratum is sampled.
This is why it is best in Run Preferences to make Number of trials to run on the
Trials tab an integer multiple of Sample size on the Sampling tab. The value of
Sample size is the number of strata into which the distribution is divided.

What is a Latin Hypercube? A Latin square has the property that each of the three
symbols A, B, and C, appear only once in each row and column of a two-dimensional

FIGURE B.5 Triangular(0,10,10) CDF, F(x) = x2/100, for 0 ≤ x ≤ 10, stratified into five equal pieces
by values of F(x). The defining values are: F−1(0.2) = 4.47, F−1(0.4) = 6.32, F−1(0.6) = 7.75, and
F−1(0.8) = 8.94.
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FIGURE B.6 Triangular PDF stratified into five equal pieces by area. The defining values are:
F−1(0.2) = 4.47, F−1(0.4) = 6.32, F−1(0.6) = 7.75, and F−1(0.8) = 8.94.

matrix, as shown below. 


A B C
B C A
C A B





A Latin cube has the property that each symbol appears only once in each row
or column of a three-dimensional matrix, as shown below in three layers of Latin
squares. 


A B C
B C A
C A B








C A B
A B C
B C A








B C A
C A B
A B C





A Latin Hypercube has the property that each symbol appears only once in each
row or column of a higher-than-three-dimensional matrix.



APPENDIX C
Variance Reduction Techniques

A s we saw in Chapter 12, one of the many uses of Monte Carlo simulation by
financial analysts is to place a value on financial derivatives. You now know that

you can sharpen the point estimate of the derivative’s value by using the brute force
method of increasing the number of trials run during a simulation. However, there
are also other relatively simple changes that you can make to a model that provide
dramatic increases in precision for a given number of simulation trials. Such changes
made to a model are called variance reduction techniques. This appendix, based on
Charnes (2002), shows how the variance reduction techniques of antithetic variates
(AV) and control variates (CV) can be used to sharpen the precision of your estimate
of the value of an Asian call option.

The best point estimate of the value of a derivative is usually the mean, or
arithmetic average of the derivative’s discounted payoff taken over all trials of the
simulation. One measure of the sharpness of the point estimate of the mean is
Mean Standard Error, defined as

Mean Standard Error =
√

Variance
Trials

. (C.1)

The precision of the mean as a point estimate is often defined as the half-width of a
95% confidence interval, which is calculated as

Precision = 1.96 × Mean Standard Error. (C.2)

Lower values of Precision in Expression (C.2) correspond to sharper estimates.
Increasing the number of trials is a brute force method of obtaining sharper

estimates. This reduces the Mean Standard Error by increasing the value of Trials
in the denominator of Expression(C.1). However, highly precise estimates with the
brute force method can take a long time to achieve. So-called variance reduction
techniques reduce Mean Standard Error by decreasing Variance in the numerator of
Expression (C.1) and can be used to speed up simulations by achieving a specified
level of precision with a smaller number of Trials.

In this appendix, we consider two variance reduction techniques, the method of
antithetic variates and the method of control variates. The AV method is more widely
applicable than CV, but when it can be used, the CV method is much more efficient.
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The use of Monte Carlo simulation in pricing options was first published by Boyle
(1977), but recently the literature in this area has grown rapidly. You can learn more
about the use of variance reduction techniques from Fishman (2006), or Law and Kel-
ton (2000). For a good discussion of variance reduction techniques applied to finan-
cial derivatives, see Boyle, Broadie, and Glasserman (1997), or Glasserman (2004).

USING CRYSTAL BALL TO VALUE AN ASIAN OPTION

As described in Chapter 12, an Asian option is also called an average option because
its price is linked to the average value of the underlying asset on specific dates.
Suppose the prices of the underlying asset are denoted by St, for t ∈ {0, 1, . . . , T},
where T is the expiration date of the option. The agreed amount for which the
underlying is traded is called the strike price, denoted by K. An average-price Asian
option has a payoff at time T based on the difference between the strike price
and the arithmetic average price of the underlying asset. Specifically, the payoff is
V = max(A − K, 0), where A = ∑T

t=1 St/T. Financial analysts are often interested in
determining the value of the option, denoted here as CA.

In the Black-Scholes worldview, a fair value for an option is the present value of
the expected value of the option payoff at expiration under a risk-neutral random
walk for the underlying asset prices. Therefore, the formula used in a Crystal Ball
model to generate daily asset prices on the ith trial of the simulation is

S(i)
t+1 = St exp

(
(r − σ 2/2)(1/252) + σ

√
1/252Z(i)

)
, (C.3)

for t = 1, 2, . . . , T, where r is the risk-free rate of interest, σ is the annual volatility
of the asset prices, and Z(i) is a standard normal random variate. Expression (C.3)
assumes that there are 252 trading days in a year.

The general approach to using Crystal Ball to find the price of an average-price
Asian option is straightforward (see the file AsianCallVarReduction.xls for specific
details):

1. For each simulation trial, i = 1, 2, . . . , N, simulate sample paths of the underlying
asset prices, St, for t = 0, 1, . . . , T according to Expression(C.3).

2. Calculate the average price, A, of the underlying asset and payoff of the option
at time T as V(i) = max(A − K, 0).

3. Compute the present value of the cash flows of the option on each sample path,
as Ĉ(i)

A = V(i)e−rT/252.
4. Use the average of the present values over the sample paths,

ĈA =
N∑

i=1

Ĉ(i)
A /N,

as the point estimate of the option’s value, and use the variance of the distribution
of the values Ĉ(i)

A to obtain the precision of ĈA with Expression (C.2).
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Crystal Ball takes care of the housekeeping details in the steps above, so that in
practice all we need to do after running the simulation model for a given number of
trials is look at the Crystal Ball Forecast window statistics to obtain the forecast cell
mean, which is ĈA, and the mean standard error, which is a measure of precision.

ANTITHETIC VARIATES

The method of antithetic variates for variance reduction is based on the fact that if
Z(i) has a standard normal distribution, then so does −Z(i). Therefore, if we replace
Z(i) in (C.3) with −Z(i), we also get a valid sample from the distribution of stock
prices at time T. In using antithetic variates with the procedure given above, we
construct two intermediate estimates in Step 3, Ĉ+

A(Z(i)) and Ĉ−
A(−Z(i)), then a final

estimate, ĈAV
A = (Ĉ+

A + Ĉ−
A)/2 as the point estimate in Step 4. Because of the way

we use Z(i) and −Z(i), the estimates Ĉ+
A and Ĉ−

A both have the same expected value;
however, because the two estimates are negatively correlated, the distribution of ĈAV

A

has a lower variance than the variance of either estimate by itself. Thus, antithetic
variates gives an estimate that has the expected value we are trying to find, but with
a smaller Mean Standard Error than the estimate obtained without using a variance
reduction technique.

CONTROL VARIATES

The method of control variates replaces the evaluation of an unknown expected value
with the evaluation of the difference between the unknown quantity and a related
quantity whose expected value is known. Here, the unknown quantity of interest
is the value, CA, of an average-price Asian call option whose payoff at expiration
is max (A − K, 0), where A is the arithmetic average of the underlying asset prices
during the holding period. The related quantity with known expectation is the value,

CG, of an Asian option whose payoff is max (G − K, 0), where G =
(∏T

t=1 St

)1/T

is the

geometric average. Because of the lognormality of the stock price model, an analytic
expression is available for CG, but not for CA (see Kemna and Vorst 1990 for details).

The values of interest here are denoted as CA = E
[
Ĉ(i)

A

]
, and CG = E

[
Ĉ(i)

G

]
,

where Ĉ(i)
A and Ĉ(i)

G are the discounted option payoffs for a single simulated path
of the underlying for options that pay off on the arithmetic and geometric means,
respectively. Because

CA = CG + E
[
ĈA − ĈG

]
,

an unbiased estimator of CA is given by

ĈCV
A = ĈA + (CG − ĈG)

which becomes the point estimate to be used in Step 4 of section C.1. Using CG as a
control variate reduces variance because it ‘‘steers’’ the estimate toward the correct
value.
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COMPARISON

The spreadsheet file AsianCallVarReduction.xls contains a Crystal Ball model shown
in Figure C.1 for estimating the value of an average-price Asian Call option, along
with reports on the performance of the model for options having different strike
prices and volatilities of the underlying asset. Figure C.2 shows the distribution of the
discounted cash flows for simulations with no variance reduction, antithetic variates
(AV), and control variates (CV) for an at-the-money Asian Call option having
initial price = $55, strike price = $55, underlying volatility = 30%, and time to
expiration = 126 days. All of these distributions have means that are estimates of
the option’s value, but only the distribution of values from the simulation with no
variance reduction resembles the distribution of cash flows that might be generated
by the option. The other three simulations yield distributions that have the desired
mean, but the shapes of the distributions are not indicative of the potential cash
flows of the option. However, the mean standard errors computed from each of the
four distributions are comparable.

Table C.1 shows the mean, standard error, and percentage of reduction in
standard error for each estimation method when the simulation model was run for
N = 1, 000 trials. The antithetic variates nearly doubled the precision (halved the
standard error). The control variates method gave an estimate that is roughly twenty
times more precise than (has a standard error error that is 4.8% of) that achieved
with no variance reduction.

FIGURE C.1 Crystal Ball model for estimating the value of an average-price Asian Call option.
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FIGURE C.2 Distribution of the discounted cash
flows for simulations with no variance reduction,
antithetic variates (AV), and control variates (CV) for
an at-the-money Asian call option having initial
Price = $55, strike Price = $55, underlying
volatility = 30 percent, and time to expiration = 126
days.
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TABLE C.1 Means, standard errors, and increases in precision from the
simulation model in AsianCallVarReduction.xls using no variance
reduction, antithetic variates (AV), control variates (CV) to obtain estimated
values of an average price Asian call option having initial price = $55, strike
price = $55, underlying volatility = 30%, and time to expiration = 126
days.

Standard
Estimation Method Mean Precision Error Increase

No Variance Reduction 3.3611 0.0476 1.00
Antithetic Variates (AV) 3.3580 0.0235 2.03
Control Variates (CV) 3.3102 0.0022 21.64

CONCLUSION

Variance reduction techniques offer potentially large increases in the precision of
estimated derivative values. The method of antithetic variates (AV) is generally less
effective than control variates (CV), but AV can be easily applied to more types of
derivatives than CV because CV requires that a control variate is available, such as
the value of the geometric-average option that was used here.

Interest in use of Monte Carlo methods for derivatives pricing is increasing
because of the flexibility of the method in handling complex financial instruments.
Monte Carlo simulation will continue to gain appeal as financial instruments become
more complex, workstations become faster, and simulation software is adopted by
more users. The use of variance reduction techniques along with the greater power
of today’s workstations can help to reduce the execution time required for achieving
acceptable precision to the point that simulation can be used by financial traders to
value derivatives in real time.



APPENDIX D
About the Download

INTRODUCTION

This appendix provides you with information on the contents of the download that
accompanies this book.

ACCESSING THE DOWNLOAD

1. Visit http://textbook.crystalball.com
2. Enter the code given on the card at the back of this book

SYSTEM REQUIREMENTS

Please refer to the Decisioneering web site, www.crystalball.com, for the latest
system requirements.

WHAT’S INCLUDED IN THE DOWNLOAD

The following sections provide a summary of the software and other materials
included in the download

Excel Worksheets

Any Excel worksheets from the book are in the folder named ‘‘Content.’’ These
worksheets are provided for your reference so that you may track the course of
the book using Microsoft Excel and build financial models of your own using these
worksheets as templates. Note that each file, however, typically contains additional
information in different worksheets within that file.

Note: Many popular spreadsheet programs are capable of reading Microsoft
Excel files. However, users should be aware that a slight amount of formatting might
be lost when using a program other than Microsoft Excel. Also, the Crystal Ball
add-in works only with Microsoft Excel.
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Crystal Ball Trial

Crystal Ball software transforms Microsoft Excel spreadsheets into dynamic
models that solve almost any problem involving uncertainty, variability and risk.
Included with this book is a time-sensitive license of Crystal Ball Professional that
will expire 180 days from the date of installation. Crystal Ball Professional includes
Monte Carlo simulation plus advanced capabilities of OptQuest, to search for
optimal solutions, CB PredictorTM to create accurate predictive models and Extreme
Speed, to run simulations up to 100 times faster.

To access the software, follow the download instructions on the inserted
card. If you experience difficulties downloading or installing the software, please
contact Crystal Ball’s Technical Support Dept. at helpdesk@crystalball.com or
http://support.crystalball.com. Technical support is available only through e-mail
and the Decisioneering web site. Crystal Ball and Decisioneering are registered
trademarks of Decisioneering, Inc.

CUSTOMER CARE

Technical support is available only through email and the Decisioneering web site.
For technical support, contact us at helpdesk@crystalball.com or http://support.
crystalball.com.



Glossary

arbitrage The purchase of securities on one market for immediate resale on another in order
to profit from a price discrepancy.

assumption An estimated value or input to a spreadsheet model.
assumption cell A value cell in a spreadsheet model that has been defined as a probability

distribution using Crystal Ball’s Distribution Gallery.
CDF Cumulative distribution function, which gives the probability that a variable will fall

at or below a given value.
certainty bands In a trend chart, a graphic depiction of a particular certainty range for each

forecast.
certainty level The percentage of values in the certainty range compared to the number of

values in the entire output distribution.
certainty range The linear distance for the set of values between the certainty grabbers on

the forecast chart.
coefficient of variability also coefficient of variance or coefficient of variation A measure

of relative variation that relates the standard deviation to the mean. Results can be
represented in percentages for comparison purposes.

continuous probability distribution A probability distribution that describes a set of unin-
terrupted values over a range. In contrast to the Discrete distribution, the Continuous
distribution assumes there are an infinite number of possible values.

correlation In Crystal Ball, a dependency that exists between assumption cells.
correlation coefficient A number between −1 and 1 that specifies mathematically the degree

of positive or negative correlation between assumption cells. A correlation of 1 indicates
a perfect positive correlation, −1 indicates a perfect negative correlation, and 0 indicates
there is no correlation.

cumulative frequency distribution A chart that shows the number or proportion (or per-
centage) of values less than or equal to a given amount.

decision variable A Crystal Ball variable in your model that you can control.
derivative security A financial instrument whose price is derived from that of another

financial security.
deterministic model Another name for a spreadsheet model which yields single-valued

results.
discrete probability distribution A probability distribution that describes distinct values,

usually integers, with no intermediate values. In contrast, the Continuous distribution
assumes there are an infinite number of possible values.

display range The linear distance for the set of values displayed on the forecast chart.
dominant A relationship between distributions in which one distribution’s values for all

percentile levels are higher than another’s. (see also Subordinate)
entire range The linear distance from the minimum forecast value to the maximum forecast

value.
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forecast A statistical summary of the assumptions in a spreadsheet model, output graphically
or numerically.

forecast cell A formula cell that has been defined as a forecast and refers either directly or
indirectly to assumption cells.

forecast definition The forecast name and parameters assigned to a cell in a Crystal Ball
dialog.

forecast formula A formula that has been defined as a forecast cell.
forecast value also trial A value calculated by the forecast formula during an iteration. These

values are kept in a list for each forecast, and are summarized graphically in the forecast
chart and numerically in the descriptive statistics.

formula cell A cell that contains a mathematical formula.
frequency also frequency count The number of times a value recurs in a group interval.
frequency distribution A chart that graphically summarizes a list of values by subdividing

them into groups and displaying their frequency counts.
goodness-of-fit A set of mathematical tests performed to find the best fit between a standard

probability distribution and a data set.
grabber also certainty grabber and truncation grabber A control that lets you use the mouse

to change values and settings.
group interval A subrange of a distribution that allows similar values to be grouped together

and given a frequency count.
iteration also trial A three-step process in which Crystal Ball generates random numbers

for assumption cells, recalculates the spreadsheet model(s), and displays the results in a
Forecast Chart.

kurtosis The measure of the degree of peakedness of a curve. A normal distribution curve
has a kurtosis of 3.

Latin hypercube sampling In Crystal Ball, a sampling method that divides an assumption’s
probability distribution into intervals of equal probability. The number of intervals
corresponds to the Minimum Sample Size option available in the Run Preferences dialog.
A random number is then generated for each interval. Compared with conventional
Monte Carlo sampling, Latin hypercube sampling is more precise because the entire
range of the distribution is sampled in a more even, consistent manner. The increased
accuracy of this method comes at the expense of added memory requirements to hold the
full Latin hypercube sample for each assumption.

mean The familiar arithmetic average of a set of numerical observations: the sum of the
observations divided by the number of observations.

mean standard error The Standard Deviation of the distribution of possible sample means.
This statistic gives one indication of how accurate the simulation is.

median The value midway (in terms of order) between the smallest possible value and the
largest possible value.

mode That value which, if it exists, occurs most often in a data set. In a continuous
probability distribution, the mode is the number on the horizontal axis lying beneath
the highest point on the pdf curve. In a discrete probability distribution, the mode is the
value having the greatest probability of occurrence.

model sensitivity The overall effect that a change in an assumption cell produces in a forecast
cell. This effect is solely determined by the formulas in the spreadsheet model.

Monte Carlo simulation A system which uses random numbers to measure the effects of
uncertainty in a spreadsheet model.
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PDF Probability density function that represents the probability that an infinitely small
variable interval will fall at a given value.

probabilistic model A system whose output is a distribution of possible values. In Crystal
Ball, this system includes a spreadsheet model (containing mathematical relationships),
probability distributions, and a mechanism for determining the combined effect of the
probability distributions on the model’s output (Monte Carlo Simulation).

probability (Classical Theory) The likelihood of an event.
Probability Distribution also Distribution A set of all possible events and their associated

probabilities.
rainbow option An option whose value depends on more than one source of uncertainty.
random number A mathematically selected value which is generated (by a formula or

selected from a table) to conform to a probability distribution.
random number generator A method implemented in a computer program that is capable

of producing a series of independent, random numbers.
range The difference between the largest and smallest values in a data set.
rank correlation also Spearman’s rank correlation A method whereby Crystal Ball replaces

assumption values with their ranking from lowest value to highest value using the integers
1 to N prior to computing the correlation coefficient. This method allows the distribution
types to be ignored when correlating assumptions.

real option An option involving a real asset.
relative probability also relative frequency A value, not necessarily between 0 and 1, that

indicates probability when used in a proportion.
reverse cumulative frequency distribution A chart that shows the number or proportion (or

percentage) of values greater than or equal to a given amount.
risk The uncertainty or variability in the outcome of some event or decision.
seed value The first number in a sequence of random numbers. A given seed value produces

the same sequence of random numbers every time you run a simulation.
sensitivity The amount of uncertainty in a forecast cell that is a result of both the uncertainty

(probability distribution) and model sensitivity of an assumption cell.
sensitivity analysis The computation of a forecast cell’s sensitivity with respect to the

assumption cells.
skewed An asymmetrical distribution.
skewed, negatively A distribution in which most of the values occur at the upper end of the

range.
skewed, positively A distribution in which most of the values occur at the lower end of the

range.
skewness The measure of the degree of deviation of a curve from the norm of a asymmetric

distribution. The greater the degree of skewness, the more points of the curve lie to
either side of the peak of the curve. A normal distribution curve, having no skewness, is
symmetrical.

spreadsheet model Any spreadsheet that represents an actual or hypothetical system or set
of relationships.

standard deviation The square root of the variance for a distribution. A measurement of the
variability of a distribution, i.e., the dispersion of values around the mean.

strike price The contractually agreed amount for which the underlying asset may be traded
in an option contract.

subordinate A relationship between distributions in which one distribution’s values for all
percentile levels are lower than another’s. (see also Dominant)
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trial also iteration A three-step process in which Crystal Ball generates random numbers
for assumption cells, recalculates the spreadsheet model(s), and displays the results in a
Forecast Chart.

trial as used to describe a parameter in certain probability distributions. The number of
times a given experiment is repeated.

truncation The specification of an upper limit, a lower limit, or both on the range of values
to be generated from a Crystal Ball assumption.

value cell A cell that contains a simple numeric value.
variable A quantity that can assume any one of a set of values and is usually referenced by

a formula.
variance The square of the standard deviation; i.e., the average of the squares of the

deviations of a number of observations from their mean value. Variance can also be
defined as a measure of the dispersion, or spread, of a set of values about a mean. When
values are close to the mean, the variance is small. When values are widely scattered
about the mean, the variance is larger.

virtual memory Memory which uses your hard drive space to store information after you
run out of random access memory. Virtual memory supplements your random access
memory.
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